www.dynamicpapers.com

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Mathematics Statistics S1 Paper 6683_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code 6683_01_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

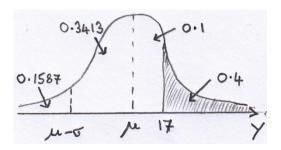
• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations


These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Question Number	Scheme	Marks
1. (a)	F(3) = P(X = 2) so <u>a</u> = 0.2	B1
	F(6) = P(X = 2) + P(X = 4) so $a + b = 0.8$ so $b = 0.6$	B1
	Sum of probs = 1 implies $c = 0.1$	B1ft
		(3)
(b)	F(7) = F(6) + 0.1 or a + b + 0.1 or 1 - c = 0.9	B1 (1)
		[Total 4]
	Notes	
(a)	$1^{\text{st}} B1 \text{for } a = 0.2$	
	2 nd B1 for $b = 0.6$ 3 rd B1 ft for $c = 0.1$	
		nnahahilitiaa
	<u>or</u> a value of c so that their $a + b + c = 0.9$ provided a, b and c are	probabilities
	The labels may not be explicit but it must be clear which is which	1
(b)	B1 for 0.9 only (no ft)	
	If their answer is based on their values of a, b or c, these values must	t be
	probabilities and have $a + b = 0.8$ or $c = 0.1$	
	Just stating 0.9 with no justification is B1	

Question Number	Scheme	Marks
2. (a)	(3-6) mins has width 4 and is 2cm, $(11-15)$ mins has width 5 so is <u>2.5</u> (cm) (3-6) mins has frequency of 38 and area of 19 cm ² so <u>2 people(per cm²)(o.e.)</u> <u>or</u> frequency density = $\frac{38}{4}$ = 9.5 = height	B1 M1
	(11 – 15) mins has area of 2.5× <i>h</i> cm ² so $h = \frac{12}{2 \times 2.5} = 2.4$ (cm) allow $\frac{12}{5}$	A1
(b)	$Q_2 = (6.5) + \frac{12}{25} \times 2 \text{or} (8.5) - \frac{13}{25} \times 2$	(3) M1
	= awrt <u>7.46</u>	A1 (2)
(c)	$\sum fx = 38 \times 4.5 + \dots + 7 \times 18 = 811.5 \text{ and } \overline{x} = \frac{811.5}{100}, = \text{awrt } \underline{8.12}$	M1, A1 (2)
(d)	$\sigma = \sqrt{\frac{8096.25}{100} - \overline{x}^2} = \sqrt{80.9625 - "65.85"} = \sqrt{15.1(0)}, = \text{awrt } \underline{3.89}$	M1, A1
(e)	Skewness = $\frac{3("8.12"-"7.46")}{"3.89"}$ = 0.5055 = awrt <u>0.47 ~ 0.51</u>	(2) B1
(f)	<u>Skewness</u> for Monday and Friday are <u>different</u> (o.e.) Suggests more longer delays on Friday (o.e.) [look for diagrams to support this.]	(1) B1 B1 (2)
		[Tot 12]
	Notes	
(a)	B1 for width of 2.5 (cm) allow $\frac{5}{2}$ M1 for 2 people per cm ² or a correct numerical equ'n for <i>h</i> or their width×height = 6 A1 for height of 2.4 (cm) [If just see 2.4 and 2.5 it must be clear which is <i>h</i> and which <i>w</i>]	
(b)	M1 for a correct expr'n with sign (ignoring end point). Condone 12.5 for use of $(n + 1)$ A1 for awrt 7.46 (or 7.5 if using $(n + 1)$ but must see evidence of $(n + 1)$ approach)	
(c)	 M1 for an attempt at Σ fx (i.e. <u>full</u> expression or 650 < Σ fx < 950) <u>and</u> division by 100 Σ fx may be in the table. A1 for 8.115 or awrt 8.12 (allow 8.11) [May be in (d) but must be labelled e.g. x̄ =] 	
(d)	M1 for a correct expression (ft their mean) including $$. Allow <i>s</i> leading to $\sqrt{15.26}$ A1 for awrt 3.89 Allow use of <i>s</i> = awrt 3.91 [Correct ans. only to (c) or (d) full marks]	
(e)	B1 for a correct expression seen using their values (σ must be > 0) or awrt 0.47 ~ 0.51	
(f)	 1st B1 for a comment that skewness is different (<u>only</u> commenting on "correlation" is B0) If ans. to (e) > 0 allow B1 for e.g. "skewness on Fri is < 0"["on Fri" may be implied] 2nd B1 for a comment about <u>length</u> of delay e.g. "<u>more long</u> ones (on Fri.) or "<u>longer</u> delays on Fri." 	
	or <u>longer</u> delays on Fri."	

Question Number	Scheme	Marks	
3. (a)	$[P(\mu < Y < 17) =] 0.5 - 0.4 = \underline{0.1}$	B1	
(b)	$P(Y > \mu - \sigma) = P(Z > -1)$	(1) M1	
	= 0.841(3)	A1	
	$P(\mu - \sigma < Y < 17) = 0.8413 - 0.4$	dM1	
	= <u>0.441</u> (3)	A1 (4)	
ALT	$P(Y > \mu - \sigma) = P(Z > -1)$	M1	
	$P(Y > 17) = 0.4 \implies Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$	dM1	
	Sight of $P(-1 < Z < 0.253) = 0.441(3)$	1 st A1 2 nd A1	
		[Total 5]	
	Notes		
(a)	B1 for 0.1 as clearly their final answer or clear statement "P($\mu < Y < 17$) = 0.1"	,	
	Ignore poor or incorrect notation if answers are correct		
(b)	1 st M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un	-simplified	
	1 st A1 for 0.841 or better (calc 0.84134473) <u>or</u> $1 - 0.8413 = 0.1587$ (ac Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1	ccept 0.159)	
	May be statement e.g. P($Y > \mu - \sigma$) = 0.841(3) or on clearly labelled	diagram.	
	$2^{nd} dM1$ (dep on 1 st M1) for a correct use of their 0.8413 and the given 0.4 or 0.341(3) + their (a)		
	or $0.6 - \text{their } 0.1587$		
	2^{nd} A1 for 0.441 or better (correct answer only 4/4)		
ALT	Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1 st M1 as in scheme		
	Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P(-1 < Z < 0	.25) 2 nd M1	
	Write or attempt P($-1 < Z < 0.253$) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct		
	probability statement that would lead to the final answer.		

Question Number	Scheme	Marks
4. (a)	$P(G_1) + P(R_1 \cap G_2) + P(Y_1 \cap G_2) \underline{\text{or}} P(GY) + P(GR) + P(RG) + P(YG) (\text{o.e.})$	M1
	$= \frac{1}{64} + \frac{r}{64} \times \frac{1}{63} + \frac{y}{64} \times \frac{1}{63} = \frac{1}{64} + \frac{r+y}{64 \times 63} \underline{\text{or}} 2 \times \frac{r+y}{64 \times 63}$	A1
	$= \frac{1}{64} + \frac{63}{64 \times 63} \underline{\text{or}} \frac{2 \times 63}{64 \times 63} \underline{\text{or}} \frac{1}{64} + \frac{1}{64} \underline{\text{or}}$	M1
	$=\frac{1}{32}$ or 0.03125	A1
(b)	$P(R_1 \cap R_2) = \frac{r}{64} \times \frac{r-1}{63} = \frac{5}{84}$	(4) M1A1
	$r(r-1) = 5 \times 64 \times 63 \div 84 = 240$ hence $r^2 - r - 240 = 0$ or $r^2 - r = 240$ (*)	A1cso (2)
(c)	$r^{2} - r - 240 = (r - 16)(r + 15) \{= 0\} \text{ or } 16^{2} - 16 - 240 = 256 - 256$ or $\frac{16}{64} \times \frac{15}{63} = \frac{5}{84}$	(3) M1
	so $r = 16$ and rejecting -15 (*)	A1cso (2)
(d)	$P(\ge 1 \text{ red}) = P(RG) + P(GR) + P(RY) + P(YR) + P(RR) \text{ or } \frac{2}{252} + \frac{2y}{252} + \frac{15}{252} (\text{o.e.})$	M1,
	$\underline{\text{or }} P(R_1) + P(R_1' \cap R_2) \underline{\text{or }} \frac{16}{64} + \frac{48}{64} \times \frac{16}{63} \underline{\text{or }} 1 - \frac{48}{64} \times \frac{47}{63}, = \frac{37}{\underline{84}}$	A1
	Require: $\frac{P(R_1 \cap R_2)}{P(\text{at least one red})} = \frac{\frac{5}{84}}{\frac{137}{84}}, \text{and } n = \frac{5}{37} \text{ or } 0.135$	M1, A1
		(4) [Total 13]
(a)	Notes 1 st M1 for at least 2 correct cases. May be in symbols or probs. May be in tree	diagram
	Use of $r = 16$ or $y = 47$ can score maximum of 1 st M1 then A0M0A0	
	1 st A1 for all cases and their assosciated probs added	
	2 nd M1 for combining probabilities and using $r + y = 63$ 2 nd A1 for $\frac{1}{32}$ or an exact equivalent (correct answer only 4/4)	
	2 At for $\frac{1}{32}$ of an exact equivalent (correct answer only 4/4)	
(b)	M1 for $\frac{r}{64} \times g(r) =$ where $g(r)$ is any linear function of r	
	1^{st} A1 for any correct equation in r	
	2 nd A1cso for correctly simplifying to the given equation with no incorrect wor There should be at least 1 intermediate step seen	king seen.
(c)	M1 for correct factors <u>or</u> completing square <u>or</u> use of formula <u>or</u> substitution	n
	A1cso for concluding $r = 16$ and rejecting -15 (e.g. crossing out etc)	
(d)	1 st M1 for a correct expression for at least one red. May be in symbols or prob	
	1 st A1 for $\frac{37}{84}$ (o.e.) as a single fraction <u>or</u> awrt 0.440 [May be implied by corrected by a single fraction of a single fra	
	2^{nd} M1 for a ratio of probabilities (denom may be in symbols) with numerator of 2^{nd} A1 for $\frac{5}{37}$ or an exact equivalent	DI $\frac{3}{84}$ (0.e.)
	<i>Si</i> , A	

Question Number	Scheme	Marks
5. (a)	The <u>distribution</u> is <u>symmetric</u> about the value 2 (o.e.) ["data" is B0]	B1 cso
(b)	Sum of probs = 1 (or use of $E(X) = 2$) leading to $3a + 2b = 1$	(1) B1 (1)
(c)	$E(X^{2}) = (-1)^{2}b + 2^{2}a + 4^{2}a + 5^{2}b [= 20a + 26b \dots \text{condone } 24b]$	M1
	$7.1 = 20a + "26"b - 2^{2} \text{ or } 7.1 = 20a + "26"b - (6a + 4b)^{2} \text{ or } 7.1 = 8a + 18b$ 11.1 = 20a + 26b	M1 A1
(d)	e.g. (b)×13 and subtract (c) yielding: $1.9 = 19a$ $\underline{a = 0.1}$ and $\underline{b = 0.35}$	(3) M1 A1, A1 (3)
(e)(i)	$[E(Y) = 10 - 3E(X) = 10 - 3 \times 2] = \underline{4}$	B1 (3)
(ii)	$[\operatorname{Var}(Y)] = (-3)^2 \operatorname{Var}(X)$	M1
	= <u>63.9</u>	A1
(f)	Y > X gives: $10 - 3X > X$ leading to $10 > 3X + X$ or $X < 2.5X < 2.5$ means $X = -1$, 0 and 2 $P(Y > X) = 2a + b = 0.55$ or $\frac{11}{20}$ (o.e.)	(3) M1 A1 A1ft
		(3)
	Notes	[Total 14]
(a)	B1 for argument using <u>symmetry</u> "distribution is symmetric" B1 "probs are symmetric" B0 "it is symmetric" is B0 <u>or</u> a correct expression $(6a + 4b)$ and use of sum of probs = 1	
(b)	B1 for $3a + 2b = 1$ (o.e.) (any equivalent correct equation, needn't be simplified	ed)
(c)	1 st M1 for a full expression for $E(X^2)$. Condone $-1^2 b \dots \underline{or} 20a + 26b \underline{or} 20a + 24b$ Allow Var(X) called $E(X^2)$. M0 for $\frac{20a+26b}{5}$ unless you see $E(X^2) = 20a + 26b$ (o.e.) first.	
	2^{nd} M1 for use of the correct formula to form an equation for <i>a</i> and <i>b</i> . If their l A1 for $11.1 = 20a + 26b$ (or equivalent but must be only 3 non-zero term	
(d)	M1 for solving their 2 linear equations in <i>a</i> and <i>b</i> and reducing to an equ'n ir	one variable
	Condone 1 arithmetic or sign error 1^{st} A1 for $a = 0.10$ or an exact equivalent 2^{nd} A1 for $b = 0.35$ or an exact equivalent	
Ans only	One correct value scores M1 and the relevant A1 and both correct score	s 3/3
(e)(ii)	M1 for correct use of the Var($aX + b$) formula. Condone -3^2 if it later becomes +9 <u>or</u> $[E(Y^2)] = 79.9$ and $[Var(Y)] = 79.9 - their (E(Y))^2$ A1 for 63.9	
(f)	M1 for an attempt to solve the linear inequality leading to $10 > 3X + X \text{ or } Y > 2.5$ or $Y \ge 4$ A1 for the correct 3 values of X or prob. dist. for Y and $y = 4$, 10, 13 or $P(X < 2.5) = 2a + b$ A1ft for an answer = their $2a + b$ provided a, b and $2a + b$ are probabilities. Must be a value	
NB(e/f)	x -1 0 2 4 5 Correct answer only is y 13 10 4 -2 -5 $and b is 3/3$ BUT $2a + b$ only is 1	

www.dynamicpapers.com

Question Number	Scheme	Marks
6. (a)	$(S_{th}) = 31070 - \frac{61 \times 6370}{8} \text{ or } 31070 - 48571.25 ; (S_{tt}) = 693 - \frac{61^2}{8} \text{ or } 693 - 465.125$	M1; M1
	$(S_{th}) = -17501.25$ and $(S_{tt}) = 227.875$ (*)	A1cso
(b)		(3) B1 (1)
(c)	$\begin{bmatrix} r = \frac{\mathbf{S}_{yx}}{\sqrt{\mathbf{S}_{yy} \times \mathbf{S}_{xx}}} \end{bmatrix} \text{ so } r = \frac{\mathbf{S}_{th}}{\sqrt{\mathbf{S}_{tt} \times \mathbf{S}_{hh}}} \underline{\text{or}} r^2 = \frac{(\mathbf{S}_{th})^2}{\mathbf{S}_{tt} \times \mathbf{S}_{hh}} \underline{\text{or}} \mathbf{S}_{hh} = \frac{(\mathbf{S}_{th})^2}{r^2 \times \mathbf{S}_{tt}} \begin{vmatrix} \underline{\text{or}} \\ \mathrm{substitute} \\ 1 \text{ value} \end{vmatrix}$	M1
	e.g. $\pm 0.985 = \frac{\pm 17501.25}{\sqrt{227.875 \times S_{hh}}} \text{ or } S_{hh} = \frac{(\pm 17501.25)^2}{(\pm 0.985)^2 \times 227.875}$ o.e. $(= 1.385.380.258)$	A1,
	= awrt 1 390 000	A1
	$b = \frac{-17501.25}{1385380.258} = -0.0126328, = awrt - 0.013$	M1, A1
	[NB $\overline{t} = 7.625, \ \overline{h} = 796.25$] $a = \frac{61}{8} - "-0.0126" \times \frac{6370}{8}$ [= 17.6838]	M1
	So $t = 17.7 - 0.0126h$	A1 (7)
(d)	<i>a</i> is an estimate of the <u>temperature</u> at <u>sea level</u> is (17.7 °C)	(7) B1
(e)	(\mp) 150×b (o.e. e.g. [17.7 - 0.0126h] - [17.7 - 0.0126(h + 150)])	(1) M1
	$= 1.89 \qquad \text{awrt} \underline{2 (^{\circ}\text{C})}$	A1 (2)
		(2) [Tot 14]
	Notes	
(a)	· · · · · · · · · · · · · · · · · · ·	istent use
		≠8 M0M1
	A1cso for both answers correct and both Ms scored.	
(b)	B1 for correct and relevant comment about the value of r and saying it does support	•
	Allow "it is"" <u>strong</u> " or " <u>near perfect</u> " correlation BUT B0 for "perfect" or "highly	y negative"
(c)	In (c) condone x for h and y for t except in 4^{th} A1 1 st M1 for the sight of the formula for r and an attempt to do something useful wit	h it
	1 st A1 for a correct numerical expr'n in S _{hh} or $\sqrt{S_{hh}}$ Accept with 3sf values (ignor	
	2^{nd} A1 for awrt 1 390 000 (3sf gives 1 384 422.948 but scores 1^{st} A1 and 2^{nd} A0)	- /
	2 nd M1 for a correct expression for <i>b</i> seen (ft their values to 3sf) Use of $S_{tt} \rightarrow -76$	5.8 is M0
	3^{rd} A1 for awrt – 0.013 (candidates using 3sf for S _{hh} should therefore get this) $s_{tr} = 227875 = 0.0120$ but is 2nd M0.2rd A0. And only of $= 0.0126$ is M1A	1 4 1 7 7 1 4 1
Beware	$\frac{S_n}{S_{th}} = \frac{227.875}{-17501.25} = -0.0130 \text{ but is } 2^{nd} \text{ MO } 3^{rd} \text{ A0} \text{ Ans only of } -0.0126\text{ is M1A}$	
	3^{rd} M1 for a correct use of \overline{t} and \overline{h} to find <i>a</i> ft their <i>b</i> (allow letter <i>b</i> or even <i>b</i> = 4^{th} A1 for a correct equation with <i>a</i> = awrt 17.7 and <i>b</i> = awrt - 0.0126 [No y and x	
(d)	B1 for stating or implying that it is the <u>temperature</u> (value not needed) at <u>sea lev</u>	vel
(e)	M1 for a correct expression equivalent to (\mp) 150b. Can use letter b or ft their value(s).	
	A1 for awrt 2 (°C not required) Allow \pm can give if "a" incorrect or "b" from M Common wrong answer of 11520 can score M1A0 even if no working seen.	10A0 in (c)

Question Number	Scheme	Marks
7.	$[W \sim N(140, 40^2)]$	
(a)	$P(W < 92) = P\left(Z < \frac{92 - 140}{40}\right) = \left[P(Z < -1.2)\right]$	M1
	= 1 - 0.8849 = awrt <u>11.5</u> (%) or <u>0.115</u>	dM1,A1 (3)
(b)	$[P(W > q_3) = P(W > 92) \times P(W > q_3 W > 92) =] (1 - (a)) \times 0.25 = 0.8849 \times 0.25$ $= 0.221225 = awrt \ \underline{0.221}$	M1 A1 (2)
(c)	$P(W < q_1 W > 92) = 0.25$ or $P(W > q_1 W > 92) = 0.75$	M1
	$P(92 < W < q_1) = 0.25 \times 0.8849 = "0.221"$ or $P(W > q_1) = 0.75 \times 0.8849 = 0.663675$	M1
	$P(W < q_1) = 0.221225 + 0.115 = awrt 0.336 \text{ or } P(W > q_1) = 0.663675 = awrt 0.664$	A1
	$\frac{q_1 - 140}{40} = -0.42 \text{(calculator gives } -0.422513 \sim -0.423404 \text{)}$	M1
	so $q_1 = 123.2 = \text{awrt } \underline{123}$ (g)	A1
		(5)
(d)	0.221 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \times 3!$	M1M1
	$=\frac{3}{16}$ or 0.1875	A1 (3)
	92 Q_1 140 Q_3 W 123 171 W	[Tot 13]
	Notes	
	Condone poor use of notation etc e.g. " $P > q_1$ " for $P(W > q_1)$ etc	
(a)	(a) 1^{st} M1 for standardising attempt with 92 or 188, 140 and 40 (o.e.) Accept \pm ignore is $2^{\text{nd}} \text{ dM1}$ dependent on 1^{st} M1 , for attempting $1 - p$ where $0.5A1 for awrt 11.5 (%) or 0.115$	
(b)	M1 for $(1 - \text{their}(a)) \times 0.25$ or $1 - [(1 - (a)) \times 0.75 + (a)] = 1 - [0.8849 \times 0.75 + 0.1]$	151]
	A1 for awrt 0.221	1
(c)		
(0)	2^{nd} M1 for either correct probability statement and 0.25 or 0.75 × (1 – their (a))	
	1 st A1 for $P(W < q_1) = awrt 0.336$ or $P(W > q_1) = awrt 0.664$ NB May be standard	dised
	Award M1M1A1 for either probability clearly stated or marked on a correct ske	
	3 rd M1 for standardising with q_1 , 140 and 40 and setting equal to z where 0.40< $ z $	< 0.45
	2 nd A1 for awrt 123 (condone minor slips in working if correct answer obtained)	
(d)	1 st M1 for $0.25 \times 0.25 \times 0.5$ (o.e.) e.g. $\frac{1}{32}$ may be seen as decimals or fractions	
	2^{nd} M1 for $\times 3!$ or $\times 6$ or adding all 6 cases. Must be multiplying probabilities.	
	A1 for $\frac{3}{16}$ or any exact equivalent	

www.dynamicpapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom