

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Mathematics Core Mathematics C4 (6666)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 6666_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- aef "any equivalent form"
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Notes	Marks			
1. (a)	√(4 -	$\overline{(9x)} = (4 - 9x)^{\frac{1}{2}} = \underline{(4)^{\frac{1}{2}}} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}}$	$(4)^{\frac{1}{2}}$ or $\underline{2}$	<u>B1</u>			
	= {2}	$\left[1 + \left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(kx)^{2} + \dots\right]$	see notes	M1 A1ft			
	= {2}	$ \left[1 + \left(\frac{1}{2}\right) \left(-\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} \left(-\frac{9x}{4}\right)^{2} + \dots \right] $					
	= 2[1-	$-\frac{9}{8}x - \frac{81}{128}x^2 + \dots$	see notes				
	= 2 -	$\frac{9}{4}x$; - $\frac{81}{64}x^2$ +	isw	A1; A1			
		ı		[5]			
			E.g. For $10\sqrt{3.1}$ (can be implied by later				
(b)	$\sqrt{310}$	$= 10\sqrt{3.1} = 10\sqrt{(4-9(0.1))}$, so $x = 0.1$	working) and $x = 0.1$ (or uses $x = 0.1$)	B1			
			Note: $\sqrt{(100)(3.1)}$ by itself is B0				
			0.1.000.01.01.4				
	When	$x = 0.1 \sqrt{(4-9x)} \approx 2 - \frac{9}{4}(0.1) - \frac{81}{64}(0.1)^2 + \dots$	Substitutes their x, where $ x < \frac{4}{9}$	M1			
	WHEH	$x = 0.1 \sqrt{(4 - 3x)} \approx 2 - \frac{1}{4}(0.1) - \frac{1}{64}(0.1) + \dots$	into all three terms of their	IVII			
			binomial expansion				
		= 2 - 0.225 - 0.01265625 = 1.76234375					
	So, √	$310 \approx 17.6234375 = \underline{17.623} \text{ (3 dp)}$	17.623 cao	A1 cao			
	Note	: the calculator value of $\sqrt{310}$ is 17.60681686	which is 17.607 to 3 decimal places	[3]			
		Oti	1 NT-4	8 marks			
		Question					
1. (a)	B1	$(4)^{\frac{1}{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's	constant term in their binomial expansion	n			
	M1	Expands $(+ kx)^{\frac{1}{2}}$ to give any 2 terms out of	3 terms simplified or un-simplified,				
		E.g. $1 + \left(\frac{1}{2}\right)(kx)$ or $\left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(kx)^2$	or $1 + + \frac{(2/(-2)^{2})}{2!} (kx)^{2}$				
		where k is a numerical value and where $k \neq 1$					
	A1ft	(1) $(\frac{1}{2})(-\frac{1}{2})$					
	Note	e (kx) , $k \ne 1$ must be consistent (on the RHS, not necessarily on the LHS) in their expansion					
	Note	Award B1M1A0 for $2\left[1+\left(\frac{1}{2}\right)\left(-9x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x}{4}\right)^2+\dots\right]$ because (kx) is not consistent					
	Note	Incorrect bracketing: $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x^2}{4}\right)+\dots\right]$ is B1M1A0 unless recovered					
	A1	$2 - \frac{9}{4}x$ (simplified fractions) or allow $2 - 2$	$.25x$ or $2 - 2\frac{1}{4}x$				
	A1	Accept only $-\frac{81}{64}x^2$ or $-1\frac{17}{64}x^2$ or -1.2650	$525x^2$				

				Qu	estion 1 Note	es Continue	ed			
1. (a) ctd.	SC	If a candidate	e would o	otherwise sc	ore 2 nd A0, 3 ⁿ	d A0 (i.e. so	ores A0A0 in th	e final two	marks to (a))	
cta.		then allow S	_							
		SC: $2\left[1-\frac{9}{8}\right]$	SC: $2\left[1-\frac{9}{8}x;\right]$ or SC: $2\left[1+\frac{81}{128}x^2+\right]$ or SC: $\lambda\left[1-\frac{9}{8}x-\frac{81}{128}x^2+\right]$							
		or SC: λ –	or \mathbf{SC} : $\left[\lambda - \frac{9\lambda}{8}x - \frac{81\lambda}{128}x^2 + \dots\right]$ (where λ can be 1 or omitted), where each term in the $\left[\dots\right]$							
		is a simplifie	d fraction	n or a decima	al,					
		OR SC: for	$2 - \frac{18}{8}x$	$x - \frac{162}{128}x^2 + .$	(i.e. for not	simplifyin	g their correct co	pefficients)		
	Note	Candidates w	vho write	$2\left[1+\left(\frac{1}{2}\right)\right]$	$\left(\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}$	$\frac{1}{2}$) $\left(\frac{9x}{4}\right)^2$ +	$]$, where $k =$	$=\frac{9}{4}$ and not	$-\frac{9}{4}$	
		and achieve		0-		M1A1A0A	1			
	Note	Ignore extra								
	Note	You can igno				2	7			
	Note	Allow B1M1	A1 for	$2\left[1+\left(\frac{1}{2}\right)\right]$	$-\frac{9x}{4} + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}$	$\frac{(\frac{1}{2})}{(\frac{9x}{4})} + .$]			
	Note	Allow B1M1	A1A1A	1 for $2\left[1+\left(\frac{1}{2}\right)\right]$	$\left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right) + \frac{9x}{4}$	$\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{9x}{4}\right)$	$\left[\frac{1}{2} \right]^2 + \dots = 2 - \frac{2}{3}$	$\frac{9}{4}x - \frac{81}{64}x^2$	+	
(b)	Note	Give B1 M1	for $\sqrt{310}$	$\overline{0} \approx 10 \left(2 - \frac{1}{2}\right)$	$\frac{9}{4}(0.1) - \frac{81}{64}$	$(0.1)^2\bigg)$				
	Note	Other altern	<u>native su</u>	itable value	$\frac{s \text{ for } x \text{ for } }{2}$	$\sqrt{310} \approx \beta \sqrt{4}$	4 - 9(their x)			
			b	x	Estimate		Ь	x	Estimate	
			7	$-\frac{38}{147}$	17.479		14	$\frac{79}{294}$	18.256	
			8	$-\frac{3}{32}$	17.599		15	118 405	18.555	
			9	14 729	17.607		16	119 384	18.899	
			10	$\frac{1}{10}$	17.623		17	$\frac{94}{289}$	19.283	
			11	$\frac{58}{363}$	17.690		18	$\frac{493}{1458}$	19.701	
			12	$\frac{133}{648}$	17.819		19	$\frac{126}{361}$	20.150	
			13	$\frac{122}{507}$	18.009		20	$\frac{43}{120}$	20.625	
	Note	Apply the scl	heme in	the same way	y for their β	and their x				
		E.g. Give B1	1 M1 A1	for $\sqrt{310} \approx$	$= 12\left(2 - \frac{9}{4}\left(\frac{1}{6}\right)\right)$	$\left(\frac{33}{648}\right) - \frac{81}{64}$	$\left(\frac{133}{648}\right)^2 = 17.8$	19 (3 dp)		
	Note	Allow B1 M	I1 A1 for	$\sqrt{310} \approx 10$	$00\left(2-\frac{9}{4}\right)(0.4)$	$41) - \frac{81}{64}(0)$	$(0.441)^2 = 76.1$	61 (3 dp)		
	Note	Give B1 M1	A0 for \sim	√310 ≈ 10(1	$2 - \frac{9}{4}(0.1) -$	$\frac{81}{64}(0.1)^2$	$-\frac{729}{512}(0.1)^3$ =	17.609 (3 dp))	

		Question 1 Notes Contin	ued		
1. (b)	Note	Send to review using $\beta = \sqrt{155}$ and $x = \frac{2}{9}$ (which gives	(3 dp))		
	Note	Send to review using $\beta = \sqrt{1000}$ and $x = 0.41$ (which g	ives 27.346 (3 dp))		
1. (a)	Alterna	tive method 1: Candidates can apply an alternative form	of the binomial expansion		
Alt 1	$\left\{ (4-9)\right\}$	$ x)^{\frac{1}{2}} = (4)^{\frac{1}{2}} + (\frac{1}{2})(4)^{-\frac{1}{2}}(-9x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(4)^{-\frac{3}{2}}(-9x)^{2} $			
	B1	$(4)^{\frac{1}{2}}$ or 2			
	M1	Any two of three (un-simplified) terms correct			
	A1	All three (un-simplified) terms correct			
	A1	A1 $2 - \frac{9}{4}x$ (simplified fractions) or allow $2 - 2.25x$ or $2 - 2\frac{1}{4}x$			
	A1	64 64			
	Note	Note The terms in C need to be evaluated.			
		So $\frac{1}{2}C_0(4)^{\frac{1}{2}} + \frac{1}{2}C_1(4)^{-\frac{1}{2}}(-9x); + \frac{1}{2}C_2(4)^{-\frac{3}{2}}(-9x)^2$ without further working is B0M0A0			
1. (a)	Alternative Method 2: Maclaurin Expansion $f(x) = (4-9x)^{\frac{1}{2}}$				
	f''(x) = -	$-\frac{81}{4}(4-9x)^{-\frac{3}{2}}$	Correct $f\mathfrak{C}(x)$	B1	
	f'(w)-1	$\frac{1}{2}(4-9x)^{-\frac{1}{2}}(-9)$	$\pm a(4-9x)^{-\frac{1}{2}}; \ a \neq \pm 1$	M1	
	$\Gamma(x) = \frac{1}{2}$	-(4 - 9x) -(-9) 2	$\pm a(4 - 9x)^{-\frac{1}{2}}; \ a \neq \pm 1$ $\frac{1}{2}(4 - 9x)^{-\frac{1}{2}}(-9)$	A1 oe	
	$\left\{ \therefore f(0) = 2, f'(0) = -\frac{9}{4} \text{ and } f''(0) = -\frac{81}{32} \right\}$				
	So, $f(x)$	$0 = 2 - \frac{9}{4}x; - \frac{81}{64}x^2 + \dots$		A1; A1	

Question Number	Scheme			Notes	Marks
2.	$x^2 + xy + y^2 - 4x - 5y + 1 = 0$				
(a)	$\left\{\frac{2x}{2x}\right\} = \frac{2x}{2x} + \left(\frac{y + x\frac{dy}{dx}}{x}\right) + 2y\frac{dy}{dx} - 4 - 5\frac{dy}{dx} = 0$				M1 <u>A1</u> <u>B1</u>
	$2x + y - 4 + (x + 2y - 5)\frac{dy}{dx} = 0$				
	$\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$			o.e.	A1 cso
					[5]
(b)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow \right\} 2x + y - 4 = 0$				M1
	${y=4-2x \Rightarrow} x^2 + x(4-2x) + (4-2x)^2 - 4x - 5(4-2x)$	(x) + 1 = 0			dM1
	$x^2 + 4x - 2x^2 + 16 - 16x + 4x^2 - 4x - 20 + 10x + 1$	= 0			
	gives $3x^2 - 6x - 3 = 0$ or $3x^2 - 6x = 3$ or $x^2 - 2x - 1 =$	0	Corre	ct 3TQ in terms of x	A1
	$(x-1)^2 - 1 - 1 = 0$ and $x =$			Method mark for solving a 3TQ in <i>x</i>	ddM1
	$x = 1 + \sqrt{2}, \ 1 - \sqrt{2}$		x = 1	$+\sqrt{2}$, $1-\sqrt{2}$ only	A1
					[5]
(b) Alt 1	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow \right\} 2x + y - 4 = 0$				M1
	$\left\{x = \frac{4-y}{2} \Rightarrow \right\} \left(\frac{4-y}{2}\right)^2 + \left(\frac{4-y}{2}\right)y + y^2 - 4\left(\frac{4-y}{2}\right)y + y^2 - 4\left(\frac{4-y}{2}$	$\left(\frac{y}{x}\right) - 5y + 1 =$	= 0		dM1
	$\left(\frac{16-8y+y^2}{2}\right) + \left(\frac{4y-y^2}{2}\right) + y^2 - 2(4-y) - 5y$	y + 1 = 0			
	gives $3y^2 - 12y - 12 = 0$ or $3y^2 - 12y = 12$ or $y^2 - 4y$	- 4 = 0	Corre	ct 3TQ in terms of y	A1
	$(y-2)^2 - 4 - 4 = 0$ and $y =$ $x = \frac{4 - (2 + 2\sqrt{2})}{2}, x = \frac{4 - (2 - 2\sqrt{2})}{2}$	and fi	nds at le	Solves a 3TQ in y east one value for x	ddM1
	$x = 1 + \sqrt{2}, \ 1 - \sqrt{2}$		x = 1	$+\sqrt{2}$, $1-\sqrt{2}$ only	A1
					[5]
					10
(a) Alt 1	$\left\{\frac{2x}{2x}\right\} \times \left\{2x\frac{dx}{dy} + \left(y\frac{dx}{dy} + x\right) + 2y - 4\frac{dx}{dy} - 5 = 0\right\}$				M1 <u>A1</u> <u>B1</u>
	$x + 2y - 5 + (2x + y - 4)\frac{dx}{dy} = 0$				dM1
	$\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$			o.e.	A1 cso
	to the Lay 10 to Lay				[5]

		Question 2 Notes
		Differentiates implicitly to include either $x \frac{dy}{dx}$ or $y^2 \rightarrow 2y \frac{dy}{dx}$ or $-5y \rightarrow -5 \frac{dy}{dx}$.
2. (a)	M1	
		$\left(\text{Ignore } \frac{dy}{dx} = \dots \right)$
	A1	$y^2 \rightarrow 2y$ and $y^2 \rightarrow 4y \rightarrow 5y \rightarrow 1 \rightarrow 0 \rightarrow 2y \rightarrow 4y \rightarrow 5y \rightarrow 0$
	AI	$x^2 \to 2x$ and $y^2 - 4x - 5y + 1 = 0 \to 2y \frac{dy}{dx} - 4 - 5\frac{dy}{dx} = 0$
	B1	$xy \to y + x \frac{\mathrm{d}y}{\mathrm{d}x}$
	Note	If an extra term appears then award 1st A0
	Note	$2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} - 4 - 5\frac{dy}{dx} \rightarrow 2x + y - 4 = -x\frac{dy}{dx} - 2y\frac{dy}{dx} + 5\frac{dy}{dx}$
	dM1	will get 1 st A1 (implied) as the "=0" can be implied the rearrangement of their equation.
	ulv11	dependent on the previous M mark
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.
	A1	$\frac{2x+y-4}{5-x-2y}$ or $\frac{4-2x-y}{x+2y-5}$
	cso	If the candidate's solution is not completely correct, then do not give the final A mark
(b)	M1	Sets the numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) o.e.
	Note	This mark can also be gained by setting $\frac{dy}{dr}$ equal to zero in their differentiated equation from (a)
	Note	If the numerator involves one variable only then <i>only</i> the 1 st M1 mark is possible in part (b).
	dM1	dependent on the previous M mark
		Substitutes their x or their y (from their numerator = 0) into the printed equation to give an equation in one variable only
	A1	For obtaining the correct 3TQ. E.g.: either $3x^2 - 6x - 3 = 0$ or $-3x^2 + 6x + 3 = 0$
	Note	This mark can also be awarded for a correct 3 term equation. E.g. either $3x^2 - 6x = 3$
		$x^2 - 2x - 1 = 0$ or $x^2 = 2x + 1$ are all fine for A1
	ddM1	dependent on the previous 2 M marks See page 6: Method mark for solving THEIR 3-term quadratic in one variable
		Quadratic Equation to solve: $3x^2 - 6x - 3 = 0$
		Way 1: $x = \frac{6 \pm \sqrt{(-6)^2 - 4(3)(-3)}}{2(3)}$
		Way 2: $x^2 - 2x - 1 = 0 \Rightarrow (x - 1)^2 - 1 - 1 = 0 \Rightarrow x =$
		Way 3: Or writes down at least one exact correct x-root (or one correct x-root to 2 dp) from
		their quadratic equation. This is usually found on their calculator.Way 4: (Only allowed if their 3TQ can be factorised)
		• $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to $x =$
		• $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $ pq = c $ and $ mn = a$, leading to $x =$
	Note	If a candidate applies <i>the alternative method</i> then they also need to use their $x = \frac{4 - y}{2}$
		to find at least one value for <i>x</i> in order to gain the final M mark.
	A1	Exact values of $x = 1 + \sqrt{2}$, $1 - \sqrt{2}$ (or $1 \pm \sqrt{2}$), cao Apply isw if y-values are also found.
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct
		numerator for $\frac{dy}{dx}$) to gain all 5 marks in part (b)
	•	

		Question 2 Notes					
2. (a) Alt 1	M1	Differentiates implicitly to include either $y \frac{dx}{dy}$ or $x^2 \to 2x \frac{dx}{dy}$ or $-4x \to -4 \frac{dx}{dy}$. [Ignore $\frac{dx}{dy} =$]					
	A1	$x^2 \to 2x \frac{dx}{dy}$ and $y^2 - 4x - 5y + 1 = 0 \to 2y - 4 \frac{dx}{dy} - 5 = 0$					
	B1	$xy \to y \frac{\mathrm{d}x}{\mathrm{d}y} + x$					
	Note	If an extra term appears then award 1st A0					
	Note	$2x\frac{\mathrm{d}x}{\mathrm{d}y} + y\frac{\mathrm{d}x}{\mathrm{d}y} + x + 2y - 4\frac{\mathrm{d}x}{\mathrm{d}y} - 5 \rightarrow x + 2y - 5 = -2x\frac{\mathrm{d}x}{\mathrm{d}y} - y\frac{\mathrm{d}x}{\mathrm{d}y} + 4\frac{\mathrm{d}x}{\mathrm{d}y}$					
		will get 1^{st} A1 (implied) as the "=0" can be implied the rearrangement of their equation.					
	dM1	dependent on the previous M mark					
		An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$					
	A1	$\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y}$ or $\frac{dy}{dx} = \frac{4 - 2x - y}{x + 2y - 5}$					
	cso	If the candidate's solution is not completely correct, then do not give the final A mark					
(a)	Note	Writing down from no working					
		• $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y}$ or $\frac{dy}{dx} = \frac{4 - 2x - y}{x + 2y - 5}$ scores M1 A1 B1 M1 A1					
		• $\frac{dy}{dx} = \frac{4 - 2x - y}{5 - x - 2y}$ or $\frac{dy}{dx} = \frac{2x + y - 4}{x + 2y - 5}$ scores M1 A0 B1 M1 A0					
	Note	Writing $2xdx + ydx + xdy + 2ydy - 4dx - 5dy = 0$ scores M1 A1 B1					

Question Number	Scheme		Notes	Marks
3. (i)	$\frac{13-4x}{(2x+1)^2(x+3)} \equiv \frac{A}{(2x+1)} + \frac{B}{(2x+1)^2} + \frac{C}{(x+3)}$			
(a)	B = 6, C = 1		At least one of $B = 6$ or $C = 1$	B1
(a)	5 0,0 1		Both $B = 6$ and $C = 1$	B1
	$13-4x = A(2x+1)(x+3) + B(x+3) + C(2x+1)$ $x = -3 \Rightarrow 25 = 25C \Rightarrow C = 1$ $x = -\frac{1}{2} \Rightarrow 132 = \frac{5}{2}B \Rightarrow 15 = 2.5B \Rightarrow B = 1$,	Writes down a correct identity and attempts to find the value of either one of A or B or C	M1
	Either $x^2: 0 = 2A + 4C$, constant: $13 = 3A + 4C = 7A + B + 4C$ or $x = 0 \Rightarrow 13 = 3A$ leading to $A = -2$	•	Using a correct identity to find $A = -2$	A1 [4]
	13-4x	1		[۳]
(b)	$\int \frac{13-4x}{(2x+1)^2(x+3)} \mathrm{d}x = \int \frac{-2}{(2x+1)} + \frac{6}{(2x+1)^2} \mathrm{d}x$	$+\frac{1}{(x+3)}$ d	x	
	$\left[-(-2)_{\ln(2x+1)} + 6(2x+1)^{-1} + \ln(x+3) \right] + 6$.1	See notes	M1
	$ = \frac{(-2)}{2}\ln(2x+1) + \frac{6(2x+1)^{-1}}{(-1)(2)} + \ln(x+3) + c $		At least two terms correctly integrated	A1ft
	o.e. $\left\{ = -\ln(2x+1) - 3(2x+1)^{-1} + \ln(x+3) \left\{ + c \right\} \right\}$		Correct answer, o.e. Simplified or un- nplified. The correct answer must be stated on one line Ignore the absence of '+ c '	A1
			C	[3]
(ii)	$\left\{ (e^x + 1)^3 = \right\} e^{3x} + 3e^{2x} + 3e^x + 1$	$e^{3x} + 3e^{2x}$	$+3e^{x}+1$, simplified or un-simplified	B1
			At least 3 examples (see notes) of correct ft integration	M1
	$\left\{ \int (e^x + 1)^3 dx \right\} = \frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^x + x + c $	simpl	$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$ ified or un-simplified with or without $+c$	A1
				[3]
(iii)	$\int \frac{1}{4x + 5x^{\frac{1}{3}}} \mathrm{d}x, \ x > 0; \ u^3 = x$			
	$3u^2\frac{\mathrm{d}u}{\mathrm{d}x}=1$	34	$\frac{du}{dx} = 1 \text{ or } \frac{dx}{du} = 3u^2 \text{ or } \frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$ or $3u^2du = dx \text{ o.e.}$	B1
	$= \int \frac{1}{4u^3 + 5u} \cdot 3u^2 du \ \left\{ = \int \frac{3u}{4u^2 + 5} du \right\}$		pression of the form $\int \frac{\pm ku^2}{4u^3 \pm 5u} \{du\},$ $k \neq 0$ ot have to include integral sign or du Can be implied by later working	M1
	$= \frac{3}{8}\ln(4u^2 + 5) \{+c\}$		dependent on the previous M mark $\pm \lambda \ln(4u^2 + 5)$; λ is a constant; $\lambda \neq 0$	dM1
	$= \frac{3}{8} \ln \left(4x^{\frac{2}{3}} + 5 \right) \{ + c \}$	Co	rrect answer in x with or without + c	A1
				[4]
				14

		Que	estion 3 Notes						
3. (iii)	Alterna	tive method 1 for part (iii)							
Alt 1			Attempts to multiply numerator and	M1					
			denominator by $x^{-\frac{1}{3}}$	IVII					
	$\left\{ \int \frac{1}{4x} dx dx dx dx dx dx dx $	$\left. \frac{1}{45x^{\frac{1}{3}}} \mathrm{d}x \right\} = \int \frac{x^{-\frac{1}{3}}}{4x^{\frac{2}{3}} + 5} \mathrm{d}x$	Expression of the form $\int \frac{\pm kx^{-\frac{1}{3}}}{4x^{\frac{2}{3}} \pm 5} dx, k \neq 0$ M1						
			Does not have to include integral sign or du Can be implied by later working						
	$-\frac{3}{2}\ln$	$4x^{\frac{2}{3}} + 5$ $\{+c\}$	$\pm \lambda \ln(4x^{\frac{2}{3}} + 5); \ \lambda \text{ is a constant; } \lambda \neq 0$	dM1					
	8 11	13)(10)	Correct answer in x with or without + c	A1					
				[4]					
3. (i) (a)	M1		th this can be implied) and attempts <i>to find the</i> can be achieved by <i>either</i> substituting values in						
	Note	The correct partial fraction from no wor	rking scores B1B1M1A1						
(i) (b)	M1	At least 2 of either $\pm \frac{P}{(2x+1)} \rightarrow \pm D \ln P$ or	$h(2x+1) \text{ or } \pm D \ln(x+\frac{1}{2}) \text{ or } \pm \frac{Q}{(2x+1)^2} \to \pm R$	$E(2x+1)^{-1}$					
		$\pm \frac{R}{(x+3)} \to \pm F \ln(x+3)$ for their cons	stants P, Q, R .						
	A1ft	At least two terms from any of $\pm \frac{P}{(2x + 1)^2}$	At least two terms from any of $\pm \frac{P}{(2x+1)}$ or $\pm \frac{Q}{(2x+1)^2}$ or $\pm \frac{R}{(x+3)}$ correctly integrated.						
	Note	Can be un-simplified for the A1ft mark. $(2x+1)$							
	A1	Correct answer of $\frac{(-2)}{2}\ln(2x+1) + \frac{6(2x+1)^{-1}}{(-1)(2)} + \ln(x+3) \{+c\}$ simplified or un-simplified.							
		with or without '+ c '.							
	Note	Allow final A1 for equivalent answers, e.g. $\ln\left(\frac{x+3}{2x+1}\right) - \frac{3}{2x+1} \{+c\}$ or							
		$ \ln\left(\frac{2x+6}{2x+1}\right) - \frac{3}{2x+1} \left\{+c\right\} $							
	Note	Beware that $\int \frac{-2}{(2x+1)} dx = \int \frac{-1}{(x+\frac{1}{2})} dx = -\ln(x+\frac{1}{2}) \{+c\} \text{ is correct integration}$							
	Note	E.g. Allow M1 A1ft A1 for a correct un-simplified $\ln(x+3) - \ln(x+\frac{1}{2}) - \frac{3}{2}(x+\frac{1}{2})^{-1} \{+c\}$							
	Note	Condone 1 st A1ft for poor bracketing, but do not allow poor bracketing for the final A1 E.g. Give final A0 for $-\ln 2x + 1 - 3(2x + 1)^{-1} + \ln x + 3 + c$ unless recovered							
(ii)	Note	Give B1 for an un-simplified $e^{3x} + 2e^{2x}$							
	M1	At least 3 of either $ae^{3x} \rightarrow \frac{a}{3}e^{3x}$ or $be^{2x} \rightarrow \frac{b}{2}e^{2x}$ or $de^x \rightarrow de^x$ or $\mu \rightarrow \mu x$; $\alpha, \beta, \delta, \mu \neq 0$							
	Note	Give A1 for an un-simplified $\frac{1}{3}e^{3x} + e^{2x}$	$\frac{1}{2}e^{2x} + \frac{1}{2}e^{2x} + 2e^x + e^x + x$, with or without $+c$						
(iii)	Note	f + ku							
	Note	Condone 1st M1 for expressions of the f							
	Note	Give 2 nd M0 for $\frac{3u}{8u} \ln(4u^2 + 5) \{+c\}$ (u	a's not cancelled) unless recovered in later work	king					
	Note		g to $\frac{3}{4}u\ln(4u^2+5)$ as this is not in the form						
		$\pm \lambda \ln(4u^2 + 5)$							

Note	Condone 2 nd M1 for poor bracketing, but do not allow poor bracketing for the final A1
	E.g. Give final A0 for $\frac{3}{8} \ln 4x^{\frac{2}{3}} + 5 \{+c\}$ unless recovered

Question Number	Scheme			Notes	Marks
3. (ii) Alt 1	$\int (e^x + 1)^3 dx; u = e^x + 1 \implies \frac{du}{dx} = e^x$				
	$ = \int \frac{u^3}{(u-1)} du = \int \left(u^2 + u + 1 + \frac{1}{u-1} \right) $	$\left(\frac{1}{1}\right) du$	$\int \left(u^2 + \frac{1}{2}\right)^{-1} dt$	$u+1+\frac{1}{u-1}$ { du } where $u = e^x + 1$	B1
	$= \frac{1}{3}u^3 + \frac{1}{2}u^2 + u + \ln(u - 1) \{+c\}$	or		for either $\alpha u^2 \to \frac{\alpha}{3} u^3$ or $\beta u \to \frac{\beta}{2} u^2$ or $\frac{\lambda}{u-1} \to \lambda \ln(u-1)$; $\alpha, \beta, \delta, \lambda \neq 0$	M1
	$= \frac{1}{3}(e^x + 1)^3 + \frac{1}{2}(e^x + 1)^2 + (e^x + 1) + \ln \frac{1}{2}(e^x $	$(e^x + 1 - 1)$) {+ <i>c</i> }		
	$= \frac{1}{3}(e^{x} + 1)^{3} + \frac{1}{2}(e^{x} + 1)^{2} + (e^{x} + 1) + x$			$\frac{1}{3}(e^x + 1)^3 + \frac{1}{2}(e^x + 1)^2 + (e^x + 1) + x$ or $\frac{1}{3}(e^x + 1)^3 + \frac{1}{2}(e^x + 1)^2 + e^x + x$ simplified or un-simplified with or without $+ c$ Note: $\ln(e^x + 1 - 1)$ needs to be simplified to x for this mark	
					[3]
3. (ii) Alt 2	$\int (e^x + 1)^3 dx; u = e^x \implies \frac{du}{dx} = e^x$				
	$\begin{cases} = \int \frac{(u+1)^3}{u} du = \begin{cases} \int (u^2 + 3u + 3 + \frac{1}{2}) du \end{cases}$	$\left(\frac{1}{u}\right) du$	\int	$\left(u^2 + 3u + 3 + \frac{1}{u}\right) \{du\}$ where $u = e^x$	B1
	$= \frac{1}{3}u^3 + \frac{3}{2}u^2 + 3u + \ln u \left\{ + c \right\}$		At least 3 of either $\alpha u^2 \to \frac{\alpha}{3} u^3$ or $\beta u \to \frac{\beta}{2} u^3$ or $\delta \to \delta u$ or		M1
	$= \frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x\{+c\}$	5 2		$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$ or un-simplified with or without + c ds to be simplified to x for this mark	A1
					[3]

Question Number	Scheme		Notes	Marks
4. (a)	$\frac{r}{h} = \tan 30 \Rightarrow r = h \tan 30 \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{\sqrt{3}} \right\}$ $\mathbf{or} \qquad \frac{h}{r} = \tan 60 \Rightarrow r = \frac{h}{\tan 60} \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{3} \right\}$ $\mathbf{or} \qquad \frac{r}{\sin 30} = \frac{h}{\sin 60} \Rightarrow r = \frac{h \sin 30}{\sin 60} \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{h}{\sqrt{3}} \right\}$ $\mathbf{or} \qquad h^2 + r^2 = (2r)^2 \Rightarrow r^2 = \frac{1}{3}h^2$	$\left\{ h\right\}$	Correct use of trigonometry to find r in terms of h or correct use of Pythagoras to find r^2 in terms of h^2	M1
	$\left\{ V = \frac{1}{3}\pi r^2 h \Rightarrow \right\} V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h \Rightarrow V = \frac{1}{9}\pi h^3 *$	Or si	proof of $V = \frac{1}{9}\pi h^3$ or $V = \frac{1}{9}h^3\pi$ hows $\frac{1}{9}\pi h^3$ or $\frac{1}{9}h^3\pi$ with some efference to $V =$ in their solution	A1 *
(b) Way 1	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200$ $\frac{\mathrm{d}V}{\mathrm{d}t} = 1_{-1/2}$		$\frac{1}{2}\pi h^2$ o.e.	
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{3}\pi h^2$ Either		$\frac{-\pi h^2}{3}$ o.e.	BI
	Either $ \bullet \left\{ \frac{dV}{dh} \times \frac{dh}{dt} = \frac{dV}{dt} \Rightarrow \right\} \left(\frac{1}{3} \pi h^2 \right) \frac{dh}{dt} = 200 $ $ \bullet \left\{ \frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} \Rightarrow \right\} \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3} \pi h^2} $		either $\left(\text{their } \frac{dV}{dh}\right) \times \frac{dh}{dt} = 200$ or $200 \div \left(\text{their } \frac{dV}{dh}\right)$	M1
	When $h = 15, \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2} \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$		dependent on the previous M mark	dM1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3\rho} (\mathrm{cm}\mathrm{s}^{-1})$		$\frac{8}{3\rho}$	A1 cao
				[4]
(b) Way 2	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200 \implies V = 200t + c \implies \frac{1}{9}\pi h^3 = 200t + c$			
	$\left(\frac{1}{3}\pi h^2\right)\frac{\mathrm{d}h}{\mathrm{d}t} = 200$		$\frac{1}{3}\pi h^2$ o.e.	B1
	When $h = 15, \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2} \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$		as in Way 1 dependent on the previous M mark	M1 dM1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3\rho} (\mathrm{cm}\mathrm{s}^{-1})$		$\frac{8}{3\rho}$	A1 cao
				[4]

		Question 4 Notes
4. (a)	Note	Allow M1 for writing down $r = h \tan 30$
	Note	Give M0 A0 for writing down $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$ with no evidence of using trigonometry
		on r and h or Pythagoras on r and h
	Note	Give M0 (unless recovered) for evidence of $\frac{1}{3}\pi r^2 h = \frac{1}{9}\pi h^3$ leading to either $r^2 = \frac{1}{3}h^2$
		or $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$
(b)	B1	Correct simplified or un-simplified differentiation of V. E.g. $\frac{1}{3}\pi h^2$ or $\frac{3}{9}\pi h^2$
	Note	$\frac{dV}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiating their V
	M1	$\left(\text{their } \frac{dV}{dh}\right) \times \frac{dh}{dt} = 200 \text{ or } 200 \div \left(\text{their } \frac{dV}{dh}\right)$
	dM1	dependent on the previous M mark
		Substitutes $h=15$ into an expression which is a result
		of either $200 \div \left(\text{their } \frac{dV}{dh} \right)$ or $200 \times \frac{1}{\left(\text{their } \frac{dV}{dh} \right)}$
	A1	$\frac{8}{3p}$ (units are not required)
	Note	Give final A0 for using $\frac{dV}{dt} = -200$ to give $\frac{dh}{dt} = -\frac{8}{3\pi}$, unless recovered to $\frac{dh}{dt} = \frac{8}{3\pi}$

Question Number		Scheme				Notes	Marks
5.	x=1+t-	$-5\sin t, \ y = 2 - 4\cos t, \ -\pi \leqslant t \leqslant \pi$; A(k, 2), k	k > 0, lies o	n <i>C</i>		
(a)		$t = 2, $ $t = 2 - 4\cos t \Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$ $t = 1 + \frac{\pi}{2} - 5\sin(\frac{\pi}{2})$ or $t = 1 + \frac{\pi}{2} - 5\sin(\frac{\pi}{2})$	$-\frac{\pi}{2}$ – 5 sin	$\left(-\frac{\pi}{2}\right)$	and some e	s $y = 2$ to find t vidence of using in t to find $x =$	M1
		$=-\frac{\pi}{2}, k > 0,$ so $k = 6 - \frac{\pi}{2}$ or $\frac{12}{2}$		2)	$k ext{ (or } x) = 0$	$6-\frac{\pi}{2}$ or $\frac{12-\pi}{2}$	A1
	dx	dv	At least o	ne of $\frac{\mathrm{d}x}{\mathrm{d}t}$ or	$\frac{dy}{dt}$ correct ((Can be implied)	[2] B1
(b)	$\frac{dt}{dt} = 1$	$-5\cos t, \frac{\mathrm{d}y}{\mathrm{d}t} = 4\sin t$	Both	$\frac{\mathrm{d}x}{\mathrm{d}t}$ and $\frac{\mathrm{d}y}{\mathrm{d}t}$	are correct ((Can be implied)	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x}{1-x}$	$\frac{\sin t}{5\cos t}$	A	applies their	$\frac{\mathrm{d}y}{\mathrm{d}t}$ divided	by their $\frac{dx}{dt}$ and	
	at $t = -\frac{\pi}{2}$	$\frac{dy}{dx} = \frac{4\sin\left(-\frac{\pi}{2}\right)}{1 - 5\cos\left(-\frac{\pi}{2}\right)} \{= -4\}$,				M1
	2	$1-5\cos\left(-\frac{\pi}{2}\right)$		·		for this mark	
		$-2 = -4\left(x - \left(6 - \frac{\pi}{2}\right)\right)$		an equation of a tangent where $m_T \ (\neq m_N)$ is found using calculus M1		M1	
	• 2=(-	$(6-\frac{\pi}{2}) + c \Rightarrow y = -4x + 2 + 4 \left(6 - \frac{\pi}{2}\right)$ be in terms bracketing must		eting must be	of π and correct used or implied		
	$\{y-2=-$	$-4x + 24 - 2\pi \Longrightarrow \} y = -4x + 26$	$-4x + 24 - 2\pi \Rightarrow $ $y = -4x + 26 - 2\pi$		dependent on all previous marks in part (b) $y = -4x + 26 - 2\pi$		A1 cso
					(p=-	4, $q = 26 - 2\pi$)	[5]
			Question 5	Notes			7
5. (a)	Note	M1 can be implied by either x or	$k = 6 - \frac{\pi}{2}$	or awrt 4.4		<u> </u>	2.43
	Note	An answer of 4.429 without re-			act answer is	s A0	
	Note	M1 can be earned in part (a) by w	The state of the s			π	π
	Note	Give M0 for not substituting their					$=$ $-\frac{1}{2}$
	Note	If two values for <i>k</i> are found, they	•	-		`	
	Note		Condone M1 for $2 = 2 - 4\cos t \Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2} \Rightarrow x = 1 - \frac{\pi}{2} - 5\sin\left(\frac{\pi}{2}\right)$				
(b)	Note	The 1 st M mark may be implied by their value for $\frac{dy}{dx}$					
		e.g. $\frac{dy}{dx} = \frac{4\sin t}{1 - 5\cos t}$, followed by an answer of -4 (from $t = -\frac{\pi}{2}$) or 4 (from $t = \frac{\pi}{2}$)					
	Note	Give 1 st M0 for applying their $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ even if they state $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$			$\frac{x}{t}$		
	2 nd M1	• applies $y-2 = (\text{their } m_T)(x-1)$					
		• applies $2 = (\text{their } m_T)(\text{their } k)$			=		
	N T - 4	where k must be in terms of π are					
	Note	Correct bracketing must be used to	ior 2 nd M1,	out this ma	irk can be im	pnea by later wor	King

		Question 5 Notes Continued				
5. (b)	Note	The final A mark is dependent on all previous marks in part (b) being scored.				
		This is because the correct answer can follow from an incorrect $\frac{dy}{dx}$				
	Note	The first 3 marks can be gained by using degrees in part (b)				
	Note	Condone mixing a correct t with an incorrect x or an incorrect t with a correct x for the M marks				
	Note	Allow final A1 for any answer in the form $y = px + q$				
		E.g. Allow final A1 for $y = -4x + 26 - 2\pi$, $y = -4x + 2 + 4\left(6 - \frac{\pi}{2}\right)$ or				
		$y = -4x + \left(\frac{52 - 4\pi}{2}\right)$				
	Note	Do not apply isw in part (b). So, an incorrect answer following from a correct answer is A0				
	Note	Do not allow $y = 2(-2x+13-\pi)$ for A1				
	Note	$y = -4x + 26 - 2\pi$ followed by $y = 2(-2x + 13 - \pi)$ is condoned for final A1				

Question								
Number		Scheme	Notes	Marks				
6.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}$	$\frac{y^2}{\cos^2 2x}$; $-\frac{1}{2} < x < \frac{1}{2}$; $y = 2$ at $x = -\frac{\pi}{8}$						
	$\int \frac{1}{y^2}$	$-\mathrm{d}y = \int \frac{1}{3\cos^2 2x} \mathrm{d}x$	Separates variables as shown Can be implied by a correct attempt at integration Ignore the integral signs	B1				
	$\int \frac{1}{y^2}$	$dy = \int \frac{1}{3} \sec^2 2x dx$						
		$1 1(\tan 2x)$	$\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$	M1				
		$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right) \{ +c \}$	$\pm \lambda \tan 2x$	M1				
			$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right)$	A1				
	-	$-\frac{1}{2} = \frac{1}{6} \tan \left(2 \left(-\frac{\pi}{8} \right) \right) + c$	Use of $x = -\frac{\pi}{8}$ and $y = 2$ in an integrated equation <i>containing a constant of integration</i> , e.g. c	M1				
	_	$-\frac{1}{2} = -\frac{1}{6} + c \Rightarrow c = -\frac{1}{3}$	consum of integration, e.g. c					
	_	$-\frac{1}{2} = -\frac{1}{6} + c \Rightarrow c = -\frac{1}{3}$ $-\frac{1}{y} = \frac{1}{6} \tan 2x - \frac{1}{3} = \frac{\tan(2x) - 2}{6}$						
		$\frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}} \text{or} y = \frac{6}{2 - \tan 2x} \text{or} y = \frac{6\cot 2x}{-1 + 2\cot 2x}$	$\frac{2x}{\cot 2x} \qquad \left\{ -\frac{1}{2} < x < \frac{1}{2} \right\}$	A1 o.e.				
				[6] 6				
		Question 6 N						
6.	B 1	Separates variables as shown. dy and dx shoul	d be in the correct positions, though thi	s mark				
		be implied by later working. Ignore the integral	l signs. The number "3" may appear on	either				
		side. E.g. $\int \frac{1}{v^2} dy = \int \frac{1}{3} \sec^2 2x dx$ or $\int \frac{3}{v^2} dy = \int \frac{3}{v^2} dy = \int \frac{3}{v^2} dy$						
	Note	Allow e.g. $\int \frac{1}{v^2} \frac{dy}{dx} dx = \int \frac{1}{3} \sec^2 2x dx \text{ for B1 or condone } \int \frac{1}{v^2} = \int \frac{1}{3} \sec^2 2x \text{ for B1}$						
	Note	B1 can be implied by correct integration of both	n sides					
	M1	$\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$						
	M1	$\frac{1}{\cos^2 2x} \text{ or } \sec^2 2x \to \pm \lambda \tan 2x; \ \lambda \neq 0$						
	A1	$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right)$ with or without '+c'. E.g	$-\frac{6}{y} = \tan 2x$					
	M1	Evidence of using both $x = -\frac{\pi}{8}$ and $y = 2$ in an	integrated or changed equation contain	ing c				
	Note Note	This mark can be implied by the correct value or You may need to use your calculator to check the	of c					
	Note	Condone using $x = \frac{\pi}{8}$ instead of $x = -\frac{\pi}{8}$						
	A1	$y = \frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}}$ or $y = \frac{6}{2 - \tan 2x}$ or any equ		=f(x)				
	Note	You can ignore subsequent working, which follows	ows from a correct answer					

		Question 6 Notes Continued
6.	Note	Writing $\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x} \Rightarrow \frac{dy}{dx} = \frac{1}{3}y^2 \sec^2 2x$ leading to e.g.
		• $y = \frac{1}{9} y^3 \left(\frac{1}{2} \tan 2x \right)$ gets 2 nd M0 for $\pm \lambda \tan 2x$
		• $u = \frac{1}{3}y^2$, $\frac{dv}{dx} = \sec^2 2x \Rightarrow \frac{du}{dx} = \frac{2}{3}y$, $v = \frac{1}{2}\tan 2x$ gets 2^{nd} M0 for $\pm \lambda \tan 2x$
		because the variables have not been separated

Question Number	Scheme	Notes	Marks
7.	$\overrightarrow{OA} = \begin{pmatrix} -3 \\ 7 \\ 2 \end{pmatrix}, \overrightarrow{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}; \overrightarrow{OQ} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}$	$\begin{vmatrix} +4\mu \\ -6\mu \\ +2\mu \end{vmatrix}$ or $\overrightarrow{OQ} = \begin{pmatrix} 9+2\mu \\ 1-3\mu \\ 8+\mu \end{pmatrix}$ Let $\theta =$ size of angle PAB . A , B lie on l_1 and P lies on l_2	
(a)	$\left\{\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} \Longrightarrow\right\}$	Attempts to add \overrightarrow{OA} to \overrightarrow{AB}	M1
	$\overrightarrow{OB} = \begin{pmatrix} -3\\7\\2 \end{pmatrix} + \begin{pmatrix} 4\\-6\\2 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \Rightarrow B(1,1,4)$	$(1, 1, 4)$ or $\begin{pmatrix} 1\\1\\4 \end{pmatrix}$ or $\mathbf{i} + \mathbf{j} + 4\mathbf{k}$	A1
	(0) (2) (10)	at least 2 correct components for B	[2]
(b)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} - \begin{pmatrix} -3 \\ 7 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \text{ or } \overrightarrow{PA}$	$= \begin{pmatrix} -12 \\ 6 \\ -6 \end{pmatrix}$ An attempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	$\left\{\cos\theta = \frac{\overrightarrow{AP} \cdot \overrightarrow{AB}}{ \overrightarrow{AP} \overrightarrow{AB} }\right\} = \frac{\begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}}{\sqrt{(12)^2 + (-6)^2 + (6)^2}},$	Applies dot product formula between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ or a	dM1
	$ AP AB $ $\sqrt{(12)^2 + (-6)^2 + (6)^2}$.	$\sqrt{(4)^2 + (-6)^2 + (2)^2}$ multiple of these vectors	
	$\left\{\cos\theta = \frac{96}{\sqrt{216}.\sqrt{56}} \Rightarrow \cos\theta\right\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}$	-	A1
			[3]
(c)	$\left\{\cos\theta = \frac{4}{\sqrt{21}}\right\} \Rightarrow \sin\theta = \frac{\sqrt{21 - 16}}{\sqrt{21}} = \frac{\sqrt{5}}{\sqrt{21}} = \frac{\sqrt{5}}{\sqrt{21}}$	'	M1
	Area $PAB = \frac{1}{2} (\sqrt{216}) (\sqrt{56}) (\frac{\sqrt{5}}{\sqrt{21}}) $ $= 12\sqrt{2}$	$\left \frac{\sqrt{5}}{\sqrt{5}} \right = 12\sqrt{5}$ see notes	M1
	$2^{(\sqrt{21})}$	$12\sqrt{5}$	A1 cao
		$\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$, $\mathbf{p} \neq 0$, $\mathbf{d} \neq 0$ with	[3]
(d)	$\{l_2:\} \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 2\\-3\\1 \end{pmatrix}$	either $\mathbf{p} = 9\mathbf{i} + \mathbf{j} + 8\mathbf{k}$ or $\mathbf{d} = 4\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}$ or $\mathbf{d} = \text{multiple of } 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$	M1
	(8) (2) (8) (1)	Correct vector equation	A1
			[2]
(e)	$\overrightarrow{BQ} = \begin{pmatrix} 9+4\mu\\1-6\mu\\8+2\mu \end{pmatrix} - \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ = \begin{pmatrix} 8+4\mu\\-6\mu\\4+2\mu \end{pmatrix} \right\} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\1\\4 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} = \begin{pmatrix} 1\\1$	$ \begin{bmatrix} -8-4\mu \\ 6\mu \\ -4-2\mu \end{bmatrix} $ Applies their \overrightarrow{OQ} – their \overrightarrow{OB} or their \overrightarrow{OB} – their \overrightarrow{OQ}	M1
	$\overrightarrow{BQ} \bullet \overrightarrow{AP} = 0 \Rightarrow \begin{pmatrix} 8 + 4\mu \\ -6\mu \\ 4 + 2\mu \end{pmatrix} \bullet \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Rightarrow \mu = .$	Applies $\overrightarrow{BQ} \bullet \overrightarrow{AP} = 0$, o.e. and <i>solves</i> the resulting equation to find a value for μ	dM1
	$\Rightarrow 96 + 48\mu + 36\mu + 24 + 12\mu = 0 \Rightarrow 96\mu + 12\mu$	$\mu = -\frac{5}{4}$ $\mu = -\frac{5}{4}$ $\mu = -\frac{120}{96}$ or $\mu = -\frac{5}{4}$	A1 o.e.
	(9+4(-1.25)) (4)	Substitutes their value of μ into \overrightarrow{OQ}	ddM1
	$\overrightarrow{OQ} = \begin{pmatrix} 9+4(-1.25) \\ 1-6(-1.25) \\ 8+2(-1.25) \end{pmatrix} = \begin{pmatrix} 4 \\ 8.5 \\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$	(4, 8.5, 5.5) or $\begin{pmatrix} 4 \\ 8.5 \\ 5.5 \end{pmatrix}$ or $4\mathbf{i} + 8.5\mathbf{j} + 5.5\mathbf{k}$	A1 o.e.
			[5]
			15

Question	Scheme		Note	es	Marks
Number 7.	$\overrightarrow{OA} = \begin{pmatrix} -3\\7\\2 \end{pmatrix}, \overrightarrow{AB} = \begin{pmatrix} 4\\-6\\2 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}; \overrightarrow{OQ} = \begin{pmatrix} 9+4\mu\\1-6\mu\\8+2\mu \end{pmatrix}$				
(e) Alt 1	$\overrightarrow{BQ} = \begin{pmatrix} 9+2\mu\\1-3\mu\\8+\mu \end{pmatrix} - \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ = \begin{pmatrix} 8+2\mu\\-3\mu\\4+\mu \end{pmatrix} \right\} \left\{ \overrightarrow{QB} = \begin{pmatrix} -8\\3\\-4\end{pmatrix} \right\}$				M1
	$\overrightarrow{BQ} \bullet \overrightarrow{AP} = 0 \Rightarrow \begin{pmatrix} 8 + 2\mu \\ -3\mu \\ 4 + \mu \end{pmatrix} \bullet \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Rightarrow \mu = \dots$	Applies	$\overrightarrow{BQ} \bullet \overrightarrow{AP}$	= 0, o.e. and <i>solves</i> the on to find a value for μ	dM1
	\Rightarrow 96 + 24 μ + 18 μ + 24 + 6 μ = 0 \Rightarrow 48 μ + 120 = 0 \Rightarrow	$\Rightarrow \mu = -\frac{5}{2}$		$\mu = -\frac{5}{2}$	A1 o.e.
	(9+2(-2.5)) (4)	Substi	tutes the	Fir value of μ into \overrightarrow{OQ}	ddM1
	$\overrightarrow{OQ} = \begin{pmatrix} 9 + 2(-2.5) \\ 1 - 3(-2.5) \\ 8 + 1(-2.5) \end{pmatrix} = \begin{pmatrix} 4 \\ 8.5 \\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$	(4, 8.5, 5	5) or $\begin{pmatrix} 8 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 3.5 \\ 5.5 \end{pmatrix} \text{ or } 4\mathbf{i} + 8.5\mathbf{j} + 5.5\mathbf{k}$	A1 o.e.
					[5]
(b) Alt 1	Vector Cross Product: Use this scheme if a vector		et metho	d is being applied	
AIT I	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA} = \begin{pmatrix} -3\\-6\\6 \end{pmatrix}$	6 -6)		An attempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	$\mathbf{d_1} \times \mathbf{d_2} = \underbrace{\begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}} \times \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{cases} = 24\mathbf{i} + 0\mathbf{j} - \mathbf{k}$	- 48 k			
	$\sin \theta = \frac{\sqrt{(24)^2 + (0)^2 + (-48)^2}}{\sqrt{(12)^2 + (-6)^2 + (6)^2} \cdot \sqrt{(4)^2 + (-6)^2 + (2)^2}}$	Appli	betwee	or cross product formula en their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ multiple of these vectors	dM1
	$\left\{\sin\theta = \frac{\sqrt{2880}}{\sqrt{216}.\sqrt{56}} = \sqrt{\frac{5}{21}}\right\} \left\{\Rightarrow\cos\theta\right\} = \sqrt{\frac{16}{21}} = \frac{1}{2}$	$\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$		$\frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$	A1
(b)	Cosine Rule				[3]
Alt 2	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA} = \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} -3\\1\\3 \end{pmatrix} = \begin{pmatrix} -3\\1\\2 \end{pmatrix} = \begin{pmatrix} -3\\1\\3 \end{pmatrix} = \begin{pmatrix} -3$	6 -6	An att	empt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	Note: $ \overrightarrow{PA} = \sqrt{216}$, $ \overrightarrow{AB} = \sqrt{56}$ and $ \overrightarrow{PB} = \sqrt{80}$				
	$\left(\sqrt{80}\right)^2 = \left(\sqrt{216}\right)^2 + \left(\sqrt{56}\right)^2 - 2\left(\sqrt{216}\right)\left(\sqrt{56}\right)\cos\theta$) 		Applies the cosine rule the correct way round	dM1
	$\cos\theta = \frac{216 + 56 - 80}{2\sqrt{216}\sqrt{56}} = \frac{192}{2\sqrt{216}\sqrt{56}}$				
	$\{\Rightarrow\cos\theta\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$			$\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$	A1
					[3]

		Question 7 Notes
7. (b)	Note	If no "subtraction" seen, you can award 1st M1 for 2 out of 3 correct components of the difference
	Note	For dM1 the dot product formula can be applied as
		$\begin{bmatrix} 12 \\ 4 \end{bmatrix}$
		$\sqrt{(12)^2 + (-6)^2 + (6)^2} \cdot \sqrt{(4)^2 + (-6)^2 + (2)^2} \cos \theta = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$
	Note	Evaluation of the dot product for $12\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} & 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is not required for the dM1 mark
	A1	For either $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or $\cos\theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$
	Note	Using $12\mathbf{i} - 6\mathbf{j} + 6\mathbf{k}$ & $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ gives $\cos \theta = \frac{24 + 18 + 6}{\sqrt{216} \cdot \sqrt{14}} = \frac{48}{12\sqrt{21}} = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$
	Note	Using $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ & $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ gives $\cos \theta = \frac{4 + 3 + 1}{\sqrt{6} \cdot \sqrt{14}} = \frac{8}{2\sqrt{21}} = \frac{4}{\boxed{21}}$ or $\frac{4}{\boxed{21}}\sqrt{21}$
	Note	Give M1M1A0 for finding $\theta = \text{awrt } 29.2$ without reference to $\cos \theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$
	Note	Condone taking the dot product between vectors the wrong way round for the M1 dM1 marks
	Note	Vectors the wrong way round
		• E.g. taking the dot product between \overrightarrow{PA} and \overrightarrow{AB} to give $\cos \theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$
		with no other working is final A0
		• E.g. taking the dot product between \overrightarrow{PA} and \overrightarrow{AB} to give $\cos \theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$
		followed by $\cos \theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or just simply writing $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ is final A1
	Note	In part (b), give M0dM0 for finding and using $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$
(c)	Note	Give 1 st M0 for $\sin \theta = \sin \left(\cos^{-1} \left(\frac{4\sqrt{21}}{21} \right) \right)$ or $\sin \theta = 1 - \left(\frac{4}{21}\sqrt{21} \right)^2$ unless recovered
	M1	Give 2 nd M1 for either
		• $\frac{1}{2}$ (their length AP)(their length AB)(their attempt at $\sin \theta$)
		• $\frac{1}{2}$ (their length AP)(their length AB)sin(their 29.2° from part (b))
		• $\frac{1}{2}$ (their length AP)(their length AB) $\sin \theta$; where $\cos \theta =$ in part (b)
	Note	$\frac{1}{2}(\sqrt{216})(\sqrt{56})\sin(\text{awrt }29.2^{\circ}\text{ or awrt }150.8^{\circ})$ {= awrt 26.8} without reference to finding $\sin\theta$
		as an exact value if M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to finding $\sin \theta$ as an exact value is M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to $12\sqrt{5}$ is A0
	Note	If they use $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$ in part (b), then this can be followed through in part (c)
		for the 2 nd M mark as e.g. $\frac{1}{2} \left(\sqrt{110} \right) \left(\sqrt{56} \right) \sin \theta$
	Note	Finding $12\sqrt{5}$ in part (c) is M1 dM1 A1, even if there is little or no evidence of finding an exact
		value for $\sin \theta$. So $\frac{1}{2} (\sqrt{216}) (\sqrt{56}) \sin(29.2^\circ) = 12\sqrt{5}$ is M1 dM1 A1

	Question 7 Notes Continued						
7. (d)	Note	Writing $\mathbf{r} = \dots$ or $l_2 = \dots$ or $l = \dots$ or	$\frac{1}{1} \text{Line } 2 = \dots \text{ is not re}$	equired for the N	A mark		
	A1	Writing $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \mathbf{d}$,					
	Note	where $\mathbf{d} = \mathbf{a}$ multiple of $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ Writing $\mathbf{r} =$ or $l_2 =$ or $l =$ o	r Line 2 = is requi	red for the A ma	ark		
	Note	Other valid $\mathbf{p} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}$ are e.g. $\mathbf{p} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}$		$\mathbf{r} = \begin{pmatrix} 13 \\ -5 \\ 10 \end{pmatrix} + \mu$	$u\begin{pmatrix} 4\\ -6\\ 2 \end{pmatrix} \text{ is M1 A1}$		
	Note		Give A0 for writing $l_2: \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix}$ or ans $= \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix}$ unless recovered				
	Note	Using scalar parameter λ or other s				or A1	
(e)	ddM1	Substitutes their value of μ into \overline{O}	\overrightarrow{Q} , where \overrightarrow{OQ} = the	ir equation for l	2		
	Note	If they use $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$ in part (b), then this can be followed through in			in part (e)		
	Note	for the 2 nd M mark and the 3 rd M mark You imply the final M mark in part (e) for at least 2 correctly followed through component				nts for Q	
		from their μ				_	
Question Number		Scheme		Notes		Marks	
7. (c)		Cross Product: Use this scheme if		t method is bein	g applied		
Alt 1	$\overrightarrow{AP} \times \overrightarrow{A}$	$\vec{B} = \underbrace{\begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}} \times \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{cases} =$	$24\mathbf{i} + 0\mathbf{j} - 48\mathbf{k}$				
		Uses	a vector product and	$\sqrt{("24")^2 + ("0)^2}$	$(-48'')^2$	M1	
	Area P.	Area $PAB = \frac{1}{2}\sqrt{(24)^2 + (-48)^2}$				M1	
	$=12\sqrt{5}$	$2\sqrt{5}$ 12 $\sqrt{5}$				A1 cao	
					1	[3]	
7. (c) Alt 2	Note: c	γ30 0	$ \overrightarrow{PA} = \sqrt{216}$ and $ \overrightarrow{PB} $	$=\sqrt{80}$			
	$\sin \theta = \frac{1}{2}$	$a\theta = \frac{\sqrt{30 - 25}}{\sqrt{30}} = \frac{\sqrt{5}}{\sqrt{30}} = \frac{\sqrt{6}}{6}$ A correct method for converting an exact value for $\sin q$				M1	
	Area P	$AB = \frac{1}{2} \left(\sqrt{216} \right) \left(\sqrt{80} \right) \left(\frac{\sqrt{5}}{\sqrt{30}} \right) \left\{ = 12\sqrt{3} \right\}$	$\left(\frac{\sqrt{5}}{\sqrt{20}}\right) = 12\sqrt{5}$	$\frac{1}{2}$ (their PA)	(their PB) $\sin \theta$	M1	
		2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(430)]		$12\sqrt{5}$	A1 cao	
						[3]	

Question Number	Scheme	Notes	Marks
8. (a)	$\left\{ \int x \cos 4x \mathrm{d}x \right\}$	$\pm \alpha x \sin 4x \pm \beta \int \sin 4x \{dx\}$, with or without	M1
	$= \frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \left\{ dx \right\}$	$dx; \alpha, \beta \neq 0$	
	4 J 4	$\frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \{dx\}, \text{ with or without } dx$	A1
		Can be simplified or un-simplified	
	$= \frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \{+c\}$	$\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \text{ o.e. with or without } +c$	A1
	Note: You can ignore subsec	Can be simplified or un-simplified quent working following on from a correct solution	[3]
	_ π	•	[0]
(b) Way 1	$\{V = \} \pi \int_0^{\frac{\pi}{4}} \left(\sqrt{x} \sin 2x\right)^2 \{ dx \}$	$\pi \int (\sqrt{x} \sin 2x)^2 \{ dx \}$ Ignore limits and dx. Can be implied	B1
		For writing down a correct equation linking	
	$\left\{ \left x \sin^2 2x \mathrm{d}x = \right. \right\}$	$\sin^2 2x$ and $\cos 4x$ (e.g. $\cos 4x = 1 - 2\sin^2 2x$)	
	$\int x \left(\frac{1 - \cos 4x}{2} \right) \{ dx \}$ and	some attempt at applying this equation (or a manipulation of this equation which can be incorrect) to their integral Can be implied.	M1
		Simplifies $\int x \sin^2 2x \{dx\}$ to $\int x \left(\frac{1-\cos 4x}{2}\right) \{dx\}$	A1
	$\left\{ \int \left(\frac{1}{2} x - \frac{1}{2} x \cos 4x \right) dx \right\}$ $= \frac{1}{4} x^2 - \frac{1}{2} \left(\frac{1}{4} x \sin 4x + \frac{1}{16} \cos 4x \right) \left\{ -\frac{1}{4} \cos 4x \right\} = \frac{1}{4} x^2 - \frac{1}{4} \left(\frac{1}{4} x \sin 4x + \frac{1}{16} \cos 4x \right) \left\{ -\frac{1}{4} \cos 4x \right\} = \frac{1}{4} x^2 - \frac{1}{4} \left(\frac{1}{4} \cos 4x \right) \left\{ -\frac{1}{4} \cos 4x \right\} = \frac{1}{4} x^2 - \frac{1}{4} \cos 4x + \frac{1}{4} \cos 4x \right\}$	Integrates to give $\pm Ax^2 \pm Bx \sin 4x \pm C \cos 4x$; $A, B, C \neq 0$ which can be simplified or un-simplified.	M1
	$ \begin{cases} \int_{0}^{\frac{\pi}{4}} \left(\sqrt{x} \sin 2x\right)^{2} dx = \left[\frac{1}{4}x^{2} - \frac{1}{8}x \sin 2x\right] \end{cases} $	$4x - \frac{1}{32}\cos 4x \bigg]_0^{\frac{\pi}{4}} \bigg\}$	
	$= \left(\frac{1}{4} \left(\frac{\pi}{4}\right)^2 - \frac{1}{8} \left(\frac{\pi}{4}\right) \sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32} \sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}$	$\cos\left(4\left(\frac{\pi}{4}\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right)$ dependent on the previous M mark see notes	dM1
	$= \left(\frac{\pi^2}{64} + \frac{1}{32}\right) - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$		
	So, $V = \pi \left(\frac{\pi^2}{64} + \frac{1}{16} \right)$ or $\frac{1}{64} \pi^3 + \frac{1}{16}$	π or $\frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8} \right)$ o.e. two term exact answer	A1 o.e.
			[6]
		Overtion & Notes	9
	SC Special Case for the 2 nd M	Question 8 Notes [and 3 rd M mark for those who use their answer from page 2.5]	art (a)
		d 3 rd M marks for integration of the form	•= • (u)
	$\pm Ax^2 \pm$ (their answer to pa		
	where their answer to part (
	•	$px \text{ to give } \pm Ax^2 \pm Bx \sin kx \pm C \cos px$	
	$\bullet \pm Bx\sin kx \pm C\sin p$	ax to give $\pm Ax^2 \pm Bx \sin kx \pm C \sin px$	
	$\bullet \pm Bx \cos kx \pm C \sin p$	$px \text{ to give } \pm Ax^2 \pm Bx \cos kx \pm C \sin px$	
	$\bullet \pm Bx \cos kx \pm C \cos p$	px to give $\pm Ax^2 \pm Bx \cos kx \pm C \cos px$	
	$k, p \neq 0, k, p \text{ can be } 1$		

Question Number		Scheme		No	otes	Marks
8. (b) Way 2	${V=}$ π	$\int_0^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^2 \left\{ \mathrm{d}x \right\}$		Ignore limits a	$\pi \int (\sqrt{x} \sin 2x)^2 \{ dx \}$ and dx. Can be implied	B1
	$\left\{ \int x \sin x \right\}$	For writing down a cosum $\sin^2 2x dx = \begin{cases} 1 - \cos 4x \\ 2 \end{cases} $ and some attempt at applying manipulation of this equation which can			ving this equation (or a	M1
			$u = x$ and $\frac{\mathrm{d}v}{\mathrm{d}x} = x$	fies $\int x \sin^2 2x \{dx\}$ to Note: This mark can $= \frac{1 - \cos 4x}{2} \text{or} u = \frac{1}{2}x$	be implied for stating	A1
	$= x \left(\frac{1}{2}x\right)$	$\left(x - \frac{1}{8}\sin 4x\right) - \int \left(\frac{1}{2}x - \frac{1}{8}\sin 4x\right)$	$\frac{1}{3}\sin 4x$ dx			
	$= x \left(\frac{1}{2}x\right)$	$\left(-\frac{1}{8}\sin 4x\right) - \left(\frac{1}{4}x^2 + \frac{1}{32}\right)$	$\left(\cos 4x\right)\left\{+c\right\}$		Integrates to give $C\cos 4x$; $A,B,C \neq 0$ that can be simplified to this form	M1 (B1 on ePEN)
	$\left\{ \int_0^{\frac{\pi}{4}} \left(\sqrt{{4}}} \right)^{\frac{\pi}{4}} \left(\sqrt{{4}}} $	$\sqrt{x}\sin 2x\right)^{2} dx = \left[\frac{1}{4}x^{2} - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_{0}^{\frac{\pi}{4}}$				
		$\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right)$ dependent on the previous M mark see notes				dM1
	$= \left(\frac{\pi^2}{64} + \frac{\pi^2}{64}\right)$	$+\frac{1}{32} - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$				
	So, <i>V</i> =	$\pi \left(\frac{\pi^2}{64} + \frac{1}{16} \right) \text{ or } \frac{1}{64} \pi^3$	$+\frac{1}{16}\pi$ or $\frac{\pi}{2}\left(\frac{\pi^2}{32}\right)$	$\left(\frac{1}{8} + \frac{1}{8}\right)$ o.e.		A1 o.e.
			Overtion 9	Notes Continued		[6]
8. (a)	SC	Give Special Case M1		Notes Continued down the correct "by p	arts" formula and using	
		a.t			of the correct formula	
(b)	Note				$(x \sin 2x)^2$ or $y^2 = x \sin^2 2x$	
	Note	If the form $\cos 4x = \cos^2 2x - \sin^2 2x$ or $\cos 4x = 2\cos^2 2x - 1$ is used, the 1 st M cannot be gained				
	Note	until $\cos^2 2x$ has been replaced by $\cos^2 2x = 1 - \sin^2 2x$ and the result is applied to their integral Mixing x 's and e.g. θ 's:				
		Condone $\cos 4\theta = 1 - 2\sin^2 2\theta$, $\sin^2 2\theta = \frac{1 - \cos 4\theta}{2}$ or $\lambda \sin^2 2\theta = \lambda \left(\frac{1 - \cos 4\theta}{2}\right)$				
	Final	if recovered in their integration Complete method of applying limits of $\frac{\pi}{4}$ and 0 to all terms of an expression of the form				
	M1	_		т		rm
	3 .7 /			and subtracting the co		th a
	Note	copying of their answer	•	-	on $\sin 4x$ or $\cos 4x$) in	ıne
L	I	1 - 5FJ 5 of their this we	110111 pair (a) 10	r (°)		

	Question 8 Notes Continued			
8. (b)	Note	Evidence of a proper consideration of the limit of 0 on $\cos 4x$ where applicable is needed for		
0. (0)	Note	the final M mark		
		E.g. $\left[\frac{1}{4}x^2 - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_0^{\frac{\pi}{4}} =$		
		$\bullet = \left(\frac{1}{4} \left(\frac{\pi}{4}\right)^2 - \frac{1}{8} \left(\frac{\pi}{4}\right) \sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32} \cos\left(4\left(\frac{\pi}{4}\right)\right)\right) + \frac{1}{32} \text{ is final M1}$		
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - 0$ is final M0		
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \frac{1}{32}$ is final M0 (adding)		
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(\frac{1}{32}\right)$ is final M1 (condone)		
		$\bullet \left(\frac{1}{4} \left(\frac{\pi}{4}\right)^2 - \frac{1}{8} \left(\frac{\pi}{4}\right) \sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32} \cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - (0 + 0 + 0) \text{ is final M0}$		
8. (b)	Note	Alternative Method:		
		$u = \sin^2 2x$ $\frac{dv}{dt} = x$ $u = x^2$ $\frac{dv}{dt} = \sin 4x$		
		$\begin{cases} u = \sin^2 2x & \frac{dv}{dx} = x \\ \frac{du}{dx} = 2\sin 4x & v = \frac{1}{2}x^2 \end{cases}, \begin{cases} u = x^2 & \frac{dv}{dx} = \sin 4x \\ \frac{du}{dx} = 2x & v = -\frac{1}{4}\cos 4x \end{cases}$		
		$\int x \sin^2 2x dx$		
		$= \frac{1}{2}x^2 \sin^2 2x - \int \frac{1}{2}x^2 (2\sin 4x) dx$		
		$=\frac{1}{2}x^2\sin^2 2x - \int x^2\sin 4x \mathrm{d}x$		
		$= \frac{1}{2}x^{2}\sin^{2} 2x - \left(-\frac{1}{4}x^{2}\cos 4x - \int 2x \cdot \left(-\frac{1}{4}\cos 4x\right) dx\right)$		
		$= \frac{1}{2}x^{2}\sin^{2}2x - \left(-\frac{1}{4}x^{2}\cos 4x + \frac{1}{2}\int x\cos 4x dx\right)$		
		$= \frac{1}{2}x^2 \sin^2 2x + \frac{1}{4}x^2 \cos 4x - \frac{1}{2} \int x \cos 4x dx$		
		$= \frac{1}{2}x^2 \sin^2 2x + \frac{1}{4}x^2 \cos 4x - \frac{1}{2} \left(\frac{1}{4}x \sin 4x + \frac{1}{16}\cos 4x \right) \{ + c \}$		
		$= \frac{1}{2}x^2 \sin^2 2x + \frac{1}{4}x^2 \cos 4x - \frac{1}{8}x \sin 4x - \frac{1}{32}\cos 4x \ \{+c\}$		
		$V = \pi \int_0^{\frac{\pi}{4}} \left(\sqrt{x} \sin 2x \right)^2 dx = \pi \left(\frac{\pi^2}{64} + \frac{1}{16} \right) \text{ or } \frac{1}{64} \pi^3 + \frac{1}{16} \pi \text{ or } \frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8} \right) \text{ o.e.}$		

	20	
Pearson Education Limited. Registered company number 8728 with its registered office at 80 Strand, London, WC2R 0RL, Uni	zv ted Kingdom	