Surname	Other n	ames
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Mechanica Advanced/Advance		
Advanced/Advance	d Subsidiary	
Wednesday 6 June 2018 – I		Paper Reference WME01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P51413RA
©2018 Pearson Education Ltd.

1.	Particle <i>P</i> has mass 3 <i>m</i> and particle <i>Q</i> has mass <i>m</i> . The particles are moving towards each other in opposite directions along the same straight line on a smooth horizontal plane. The particles collide directly. Immediately before the collision the speed of <i>P</i> is <i>u</i> and the speed of <i>Q</i> is 3 <i>u</i> . In the collision, the magnitude of the impulse exerted by <i>Q</i> on <i>P</i> is 5 <i>mu</i> . (i) Find the speed of <i>P</i> immediately after the collision.
	(ii) Find the speed of Q immediately after the collision. (6)
_	
_	

Question 1 continued	Leave blank
Question I continued	
	Q1
/m , 1 /	
(Total 6	marks)

www.dynamicpapers.com

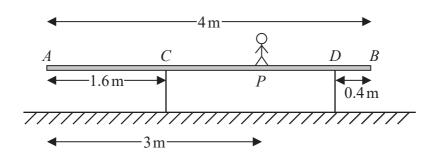


Figure 1

A uniform wooden beam AB, of mass 20 kg and length 4m, rests in equilibrium in a horizontal position on two supports. One support is at C, where AC = 1.6 m, and the other support is at D, where DB = 0.4 m. A boy of mass 60 kg stands on the beam at the point P, where AP = 3 m, as shown in Figure 1. The beam remains in equilibrium in a horizontal position.

By modelling the boy as a particle and the beam as a uniform rod,

- (a) (i) find, in terms of g, the magnitude of the force exerted on the beam by the support at C,
 - (ii) find, in terms of g, the magnitude of the force exerted on the beam by the support at D.

(6)

The boy now starts to walk slowly along the beam towards the end A.

(b) Find the greatest distance he can walk from *P* without the beam tilting.

(4)

www.dynamicpapers.co	m
	Leave
	blank
Question 2 continued	

Leave

www.dynamicpapers.	com	
Question 2 continued]	Leave blank
	- - -	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
(Total 10 mark		Q2

3.	A explicit starts from root at the point O on a straight harizontal road. The	o avalist mayos
3.	A cyclist starts from rest at the point O on a straight horizontal road. The along the road with constant acceleration $2 \mathrm{ms^{-2}}$ for 4 seconds and the move along the road at constant speed. At the instant when the cyclist start a motorcyclist starts from rest at the point O and moves along the road acceleration $4 \mathrm{ms^{-2}}$ in the same direction as the cyclist. The motorcyclist is for T seconds when she overtakes the cyclist.	en continues to ops accelerating, d with constant
	(a) Sketch, on the same axes, a speed-time graph for the motion of the speed-time graph for the motion of the motorcyclist, to the time when overtakes the cyclist.	the motorcyclist
		(4)
	(b) Find, giving your answer to 1 decimal place, the value of T .	(6)
		(0)

www.dynamicpapers.co	m
Question 3 continued	Leave blank

www.dynamicpapers.coi	n
· · · · · · · · · · · · · · · · · · ·	Leave
	blank
Question 3 continued	
	Q3
(Total 10 marks)	

A rough plane is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{3}{4}$. A particle of mass 2 kg is projected with speed 6 m s^{-1} from a point O on the plane, up a line of greatest slope of the plane. The coefficient of friction between the particle and the plane is 0.25 (a) Find the magnitude of the frictional force acting on the particle as it moves up the plane. The particle comes to instantaneous rest at the point A. (b) Find the distance OA. **(5)** The particle now moves down the plane from A. (c) Find the speed of P as it passes through O. **(5)**

Question 4 continued	Leave blank

www.dynamicpapers.com

Question 4 continued	- - - -
	-
	-
	-
	_
	_
	-
	_
	-
	-
	-
	_
	-
	_
	-
	-
	_
	-
	_
	-
	_
	_
	-
	_
	-
	_
	-
	-
	-
	-
	-
	_
	-
	_

www.dynamicpapers.cor	
Question 4 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	-
	_
	-
	-
	-
	-
	Q4
(Total 13 marks	

5. [In this question \mathbf{i} and \mathbf{j} are perpendicular horizontal unit vectors and position vectors are given relative to a fixed origin O.]

A particle P is moving in a straight line with constant velocity. At 9 am, the position vector of P is $(7\mathbf{i} + 5\mathbf{j})$ km and at 9.20 am, the position vector of P is $6\mathbf{i}$ km. At time t hours after 9 am, the position vector of P is \mathbf{r}_{p} km.

(a) Find, in $km h^{-1}$, the speed of P.

(4)

(b) Show that $\mathbf{r}_P = (7 - 3t) \mathbf{i} + (5 - 15t) \mathbf{j}$.

(2)

(c) Find the value of t when \mathbf{r}_p is parallel to $16\mathbf{i} + 5\mathbf{j}$.

(4)

The position vector of another particle Q, at time t hours after 9 am, is \mathbf{r}_Q km, where $\mathbf{r}_Q = (5 + 2t)\mathbf{i} + (-3 + 5t)\mathbf{j}$

(d) Show that P and Q will collide and find the position vector of the point of collision.

(5)

www.dynamicpapers.co	m
	Leave
	blank
Question 5 continued	
Question 5 continued	
	1

Leave

uestion 5 continued		

www.dynamicpapers.com	
	Leave
	blank
Question 5 continued	
Various o commune	
	Q5
(Total 15 marks)	

A car pulls a trailer along a straight horizontal road using a light inextensible towbar. The mass of the car is $M \, \text{kg}$, the mass of the trailer is $600 \, \text{kg}$ and the towbar is horizontal and parallel to the direction of motion. There is a resistance to motion of magnitude 200 N acting on the car and a resistance to motion of magnitude 100N acting on the trailer. The driver of the car spots a hazard ahead. Instantly he reduces the force produced by the engine of the car to zero and applies the brakes of the car. The brakes produce a braking force on the car of magnitude 6500N and the car and the trailer have a constant deceleration of magnitude 4 m s⁻² Given that the resistances to motion on the car and trailer are unchanged and that the car comes to rest after travelling 40.5 m from the point where the brakes were applied, find (a) the thrust in the towbar while the car is braking, **(3)** (b) the value of M, **(3)** (c) the time it takes for the car to stop after the brakes are applied. **(3)**

www.dynamicpapers.co	m
	Leave blank
Question 6 continued	

www.dynamicpapers.co	m
Question 6 continued	Leave blank
	Q6
(Total 9 marks)	

A α B C β

Figure 2

A washing line ABCD is fixed at the points A and D. There are two heavy items of clothing hanging on the washing line, one fixed at B and the other fixed at C. The washing line is modelled as a light inextensible string, the item at B is modelled as a particle of mass B is modelled as a particle of mass B is modelled as an angle B with B

the horizontal, where $\tan \alpha = \frac{3}{4}$, the section *BC* is horizontal and the section *CD* makes an angle β with the horizontal, where $\tan \beta = \frac{12}{5}$, as shown in Figure 2. The system is in equilibrium.

(a) Find the tension in AB.

(4)

(b) Find the tension in BC.

(3)

(c) Find the value of M.

(5)

www.dynamicpapers.co	m
Question 7 continued	Leave blank

www.dynamicpapers.co	m
· · · · ·	Leave
Overtion 7 continued	blank
Question 7 continued	

www.dynamicpapers.com

	_{Q7}
	2 marks)
TOTAL FOR PAPER: 75 END	MARKS

Question 7 continued