

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Subsidiary Level In Core Mathematics C12 (WMA01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018 Publications Code WMA01_01_1801_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$
 $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the <u>correct</u> formula (with values for a, b and c).

3. <u>Completing the square</u>

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks	
1		$y = \frac{2x^{\frac{2}{3}} + 3}{2x^{\frac{2}{3}} + 3}$		
		6		
(a)	For reducing the power of x^3 by 1 which may be			
	$x^{\frac{1}{3}} \to x^{-\frac{1}{3}}$	implied by e.g. $x^{\frac{2}{3}} \rightarrow x^{\frac{2}{3}-1}$ and no other powers of	M1	
		2 $\frac{2}{3}$ $+ 2$		
	Note that some candidates think	$\frac{2x^3+3}{6} = 2x^{\frac{2}{3}} + 3 + 6$ but the M mark can still		
	sc	core for $x^{\frac{2}{3}} \rightarrow x^{-\frac{1}{3}}$		
		Correct expression. Allow equivalent exact,		
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{2}{9}x^{-\frac{1}{3}}$	simplified forms e.g. $\frac{2x^{-\frac{1}{3}}}{9}, \frac{2}{9x^{\frac{1}{3}}}, \frac{2}{9\sqrt[3]{x}}$. Allow	A1	
	(ur))	0.222 or 0.2 with a dot over the 2 for $\frac{2}{9}$.		
	Ignore what they use to indicat	te differentiation and ignore subsequent working		
	followi	ng a fully correct answer.		
			(2)	
(b)	Increases the power by 1 for one term from			
		$\frac{2}{3}$ $\frac{5}{3}$ $\frac{5}{3}$ $\frac{5}{3}$ $\frac{5}{3}$		
		$x^{3} \rightarrow x^{3}$ or $k \rightarrow kx$. May be implied by e.g.		
	$x^{\frac{2}{3}} \rightarrow x^{\frac{5}{3}}$ or $k \rightarrow kx$	$x^3 \rightarrow x^{3^{-1}}$. This must come from correct work,	M1	
		so integrating numerator and denominator e.g. $\frac{2}{5}$		
		$\frac{2x^3+3}{6} \rightarrow \frac{\dots x^3+\dots x}{6x}$ is M0		
	Note that some candidates think	$\frac{2x^{\frac{2}{3}}+3}{6} = 2x^{\frac{2}{3}}+3+6$ but the M mark can still		
	score fo	or $x^{\frac{2}{3}} \rightarrow x^{\frac{5}{3}}$ or $k \rightarrow kx$		
		One correct term which may be un-simplified,		
	$\frac{3}{5} \times \frac{2}{6} x^{\frac{5}{3}}$ or $\frac{3}{6} x$	including the power. So, $\frac{2}{6} \times \frac{x^{1+\frac{2}{3}}}{1+\frac{2}{3}}$ would be	A1	
		acceptable for this mark.		
		All correct and simplified including $+ c$ all		
	1 5 1	appearing on one line. ($c/6$ is acceptable for c)		
	$\frac{1}{5}x^3 + \frac{1}{2}x + c$	Allow $\sqrt[3]{x^5}$ for $x^{\frac{1}{3}}$ but not x^1 for x .	A1	
		Allow 0.2 for $\frac{1}{5}$ and 0.5 for $\frac{1}{2}$		
	Ignore any spurious integral signs a	and/or dx's and ignore subsequent working following		
		uny correct answer.	(3)	
			Total 5	
·				

Question Number	Scheme	Notes	Marks
2	Mark (a) and (b) t	ogether	
(a)	$u_2 = -1, u_3 = 5$	As (a) and (b) are marked together, these can score as part of their calculation in (b) if -1 and 5 are clearly the second and third terms.	B1, B1
			(2)
(b)	$u_4 = 2 - 3 \times "5" (= -13)$	Correct attempt at the 4 th term (can score anywhere) and may be implied by their calculation below)	M1
	$\sum_{r=1}^{4} (r - u_r) = \pm \{ (1 - 1) + (2 - " - 1") + (2 - " - 1") \} $	-(3-"5")+(4-"-13")}	
	or $\sum_{r=1}^{4} (r - u_r) = \sum_{r=1}^{4} r - \sum_{r=1}^{4} u_r = \pm \left\{ (1 + 2 + 3 + 2) \right\}$	-4)-(1+"-1"+"5"+"-13")}	dM1
	A correct method for the sum or (– sum). Allo	w minor slips or mis-reads of their	
	values but the intention must be clear. Dependent on the first method mark.		
	=18	CSO	A1
			(3)
			Total 5

Question Number	Scheme	Notes	Marks
3(a)	$\left(3x^{\frac{1}{2}}\right)^4 = 81x^2$	B1: Obtains ax^n , $(a, n \neq 0)$ where $a = 81$ or $n = 2$ B1: $81x^2$	B1B1
	Do not isw so for example $3x^{2}$	$\left(\frac{1}{2}\right)^4 = 81x^2 = 9x$ scores B0B0	
			(2)
(b)	$\frac{2y^7 \times (4y)^{-2}}{3y} = \frac{y^4}{24}$	B1: Obtains ay^n , $(a, n \neq 0)$ where $a = \frac{1}{24}$ or $n = 4$ (Allow 0.41666 or 0.416 with a dot over the 6 for $\frac{1}{24}$) B1: $\frac{y^4}{24}$ (Allow $\frac{1y^4}{24}$)	B1B1
	Do not isw – mark t	their final answer	
			(2)
			Total 4

Question Number	Scheme	Notes	Marks
4(a)	$b^2 - 4ac = 8^2 - 4(p-2)(p+4)$	Attempts to use $b^2 - 4ac$ with at least two of <i>a</i> , <i>b</i> or <i>c</i> correct. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $b^2 = 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no <i>x</i> 's.	M1
	$8^2 - 4(p-2)(p+4) < 0$	For a correct un-simplified inequality in any form that is not the final printed answer or a positive constant multiple of the final printed answer with no incorrect previous statements.	A1
	$64 < 4p^2 + 8p - 32$		
	$p^2 + 2p - 24 > 0*$	Correct solution with intermediate working and no errors with the inequality sign appearing correctly before the final printed answer.	A1*
			(3)
(b)	$p^2 + 2p - 24 = 0 \Longrightarrow p = \dots$	For an attempt to solve $p^2 + 2p - 24 = 0$	
	$(p+1)^2 - 1 - 24 = 0 \Longrightarrow p = \dots$	(not their quadratic) leading to two critical values. See general guidance for solving a 3TQ when awarding this method	M1
	$(p=)$ $\qquad \qquad $	mark. May be implied by their critical values.	
	<i>p</i> = 4, –6	Correct critical values	A1
	<i>p</i> <"-6", <i>p</i> >"4"	Chooses the outside region for their two critical values. Look for $p <$ their -6, p > their 4. This could be scored from 4 or $-6 > p > 4$. Evidence is to be taken from their answers not from a diagram. Allow e.g. $p \le "-6"$, $p \ge "4"$	M1
	$p < -6 \text{or} p > 4$ $p < -6 p > 4$ $p < -6, p > 4$ $p < -6; p > 4$ $p < -6; p > 4$ $(-\infty, -6), (4, \infty)$ $]-\infty, -6[,]4, \infty[$	Correct inequalities e.g. answers as shown. Note that $p < -6$ and $p > 4$ would score M1A0 as would $4 or -6 > p > 4or p < -6 \cap p > 4. Apply isw wherepossible.$	A1
	Allow letter other than <i>p</i> to be used in	(b) but the final A mark requires answers	
	in terms Correct answer only	s of <i>p</i> only. scores full marks in (b)	
			(4)
			Total 7

Question Number	Scheme	Notes	Marks
5(i)	$5\sin 3\theta - 7\cos 3\theta = 0 \Longrightarrow \tan 3\theta = \frac{7}{5}$	M1: Reaches $\tan \dots = k$ where $k \neq 0$ A1: $\tan \dots = \frac{7}{2}$	M1A1
	$3\theta = 0.950$)54	dM1
	$3\theta = \tan^{-1}\left(\operatorname{their}\frac{7}{5}\right)$ leading to a value of	3θ . Must be 3θ here but this may be	
	implied if they divide their values by 3 (you first method	may need to check). Dependent on the	
	$\theta = 0.317 \text{ or } \theta = 1.36$	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	$\theta = 0.317$ and $\theta = 1.36$ only	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	Alternative 1	for (i):	
	$5\sin 3\theta - 7\cos 3\theta = \sqrt{74}\sin(3\theta - 0.9505)$	M1: Correct method using addition formula A1: $\sqrt{74} \sin(3\theta - 0.9505)$	M1A1
	$3\theta - 0.9505 = 0, \pi$	3θ - their $\alpha = \sin^{-1}(0)$. Dependent on the first method mark	dM1
	$\theta = 0.317$ or $\theta = 1.36$	Awrt 0.317 (Allow awrt 0.101π) orAwrt 1.36 (Allow awrt 0.434π)	A1
	$\theta = 0.317$ and $\theta = 1.36$ only	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	Special case: If both answers are given in degrees allow A1A0 but needs to be awrt 18.2 and awrt 78.2)		
	Alternative 2 for (i):		
	$5\sin 3\theta = 7\cos 3\theta \Longrightarrow 25\sin^2 \dots = 49\cos^2 \dots$		
	or		
	$5\sin 3\theta - 7\cos 3\theta = 0 \Longrightarrow 25$ M1: Obtains $p\sin^2 \dots = q\cos^2 \dots$ or p	$p\sin^2 \dots -49\cos^2 \dots = 0$ $p\sin^2 \dots -q\cos^2 \dots = 0$ $p,q > 0$	M1
	$\sin \dots = (\pm) \frac{7}{\sqrt{74}} \text{or} \cos \dots = (\pm) \frac{5}{\sqrt{74}}$ $\pm (awrt 0.8) \qquad \pm (awrt 0.6)$	Correct value for sinor cos	A1
	$3\theta = 0.950$)54	dM1
	$3\theta = \sin^{-1}\left(\operatorname{their}\frac{7}{\sqrt{74}}\right)$ or $3\theta = \cos^{-1}\left(\operatorname{their}\frac{5}{\sqrt{74}}\right)$ leading to a value of 3θ .		
	Dependent on t	he first M.	
	$\theta = 0.317 \text{ or } \theta = 1.36$	Awrt 0.317 (Allow awrt $\overline{0.101\pi}$) or Awrt 1.36 (Allow awrt 0.434π)	A1
	$\theta = 0.317 \mathrm{and} \theta = 1.36 \mathrm{only}$	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	Special case: If both answers are given in degrees allow A1A0 but needs to be awrt		
	18.2 and awrt 78.2). If they give answers in degrees and radians, the radians answers take precedence. For an otherwise fully correct solution, the final mark can be		
	withheld for extra answers in range. Ignore extra answers outside the range.		
	Answers <u>only</u> scor	es no marks.	
			(5)

5(ii)	$9\cos^2 x + 5\cos x = 3\sin^2 x$		
	$9\cos^2 x + 5\cos x = 3(1-\cos^2 x)$	Uses $\sin^2 x = \pm 1 \pm \cos^2 x$	M1
	$12\cos^2 x + 5\cos x - 3 = 0$	Correct 3 term quadratic equation. Allow equivalent equations with terms collected e.g. $12\cos^2 x + 5\cos x = 3$	A1
	$(3\cos x - 1)(4\cos x + 3) = 0$ $\Rightarrow (\cos x) = \dots$	Solves their 3TQ in cos <i>x</i> to obtain at least one value. See general guidance for solving a 3TQ when awarding this method mark. Dependent on the first method mark.	dM1
	$\cos x = \frac{1}{3}, -\frac{3}{4}$	Correct values for cos <i>x</i>	A1
	x=70.5, 289.5, 138.6, 221.4	A1: Any 2 correct solutions (awrt) A1: All 4 answers (awrt)	A1A1
	Special case: If all answers are given in radians allow A1A0 but needs to be awrt 1.2,		
	5.1, 2.4, 3.9		
	For an otherwise fully correct solution, the	e final mark can be withheld for extra	
	Answers only scores no marks.		
	iniswers only see		(6)
			Total 11

	Ignore any "= 0" and also ignore any subsec factorised for	quent attempts to solve $f(x) = 0$ once the m is seen.	
	$\frac{f(x) = 3x^3 - 8x^2 - 5x + 6 = (x+1)(x-\frac{2}{3})(x)}{\text{Just writing down roots of th}}$	(-3) scores a special case M1A1M0A0 ne cubic scores no marks.	
	$f(x) = 3x^3 - 8x^2 - 5x + 6 = (x+1)(x+1)(x+1)$	3x-2)(x-3) scores full marks	
	or (f(x) =)3(x+1)(3x-2)(x-3) $(f(x) =)3(x+1)(x-\frac{2}{3})(x-3)$	Fully correct factorisation. The factors need to appear together all on one line and no commas in between.	A1
	but $3x^2 - 11x + 6 = 3(x - \frac{2}{3})$ (f(x) -)(x + 1)(3x - 2)(x - 3)	(x-3) is fine for M1	
	Note that $3x^2 - 11x + 6 = (x - 1)^2 - 11x + (x - 1)^2 - 11x$	$\frac{12}{3}(x-3)$ scores M0 here	
	$3x^2 - 11x + 6 = (3x - 2)(x - 3)$	Attempt to factorise their 3 term quadratic according to the general guidance, even if there was a remainder and $(x + 1)$ must have been used as a factor	M1
	$(x+1)(3x^2-11x+6)$	Correct quadratic factor	A1
(b)	$(x+1)(ax^2+kx+)$	Uses $(x + 1)$ as a factor and obtains at least the first 2 terms of a quadratic with an ax^2 term and an x term. This might be by inspection or by long division.	(5) M1
	$\Rightarrow a = 3, b = -5$	A1: Correct values	(5)
	a+b=-2, 4a+b=7	M1: Solves simultaneously	M1A1
	8a + 2b - 26 = -12	Allow un-simplified	A1
	-a - b - 2 = 0	Allow un-simplified but do not condone missing brackets unless later work implies a correct expression.	A1
	$(ax^3 - 8x^2 + bx + 6) \div (x - 2)$ Attempts long division by either expression	to obtain a remainder in terms of a and b	
	$(ax - bx + bx + 0) \div (x + 1)$ or $(ax - bx + bx + 0) \div (x + 1)$) \rightarrow remainder $f(u, v)$	M1
	$\frac{\text{Alternative by lo}}{(ar^3 - 8r^2 + br + 6) \div (r+1)}$	ong division:) \rightarrow remainder $f(a, b)$	
	· · · · · ·	A1: Correct values	
	a+b=-2, 4a+b=7 $\Rightarrow a=3, b=-5$	M1: Solves two linear equations in <i>a</i> and <i>b</i> simultaneously to obtain values for <i>a</i> and <i>b</i> .	M1A1
	$a(2)^{3}-8(2)^{2}+b(2)+6=-12$	Allow un-simplified	A1
	$a(-1)^{3}-8(-1)^{2}+b(-1)+6=0$	Allow un-simplified but do not condone missing brackets unless later work implies a correct expression.	A1
6(a)	$f(\pm 1) = \dots$ or $f(\pm 2) = \dots$	Attempts $f(\pm 1)$ or $f(\pm 2)$	M1
Question	Scheme	Notes	Marks

Question Number	Scheme	Notes	Marks
7(a)	(V=)x(25-2x)(15-2x)	Correct method for the volume. It must be a correct statement for the volume.	M1
	$(V) = x(375 - 80x + 4x^2)$	$x^{2}) = 4x^{3} - 80x^{2} + 375x^{*}$	A1*
	Allow the terms of $4x^3 - 80x^2 + 375x$ to be in any order.		
	Completes correctly to printed answer with no errors including bracketing errors $\sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=1}^{\infty} \frac{1}{n} \sum_{$		
	E.g. $V = 25x - 2x^{-1}(15 - 2x) = 4$	$4x^2 - 80x^2 + 375x$ scores M1A0	
	V = of e.g. Volume = $V = r(25-2r)(15-2r) - 4r^3 - 80r^2$	- 375 r scores M1A0 (lack of working)	
	$V = x(25 - 2x)(15 - 2x) = (25x - 2x^{2})(15 - 2x) = (25x - 2x)(15 - 2x)(15 - 2x) = (25x - 2x)(15 - 2x)(15 - 2x) = (25x - 2x)(15 - 2x)(15 - 2x)(15 - 2x) = (25x - 2x)(15 - 2x)(15 - 2x)(15 - 2x)(15 - 2x) = (25x - 2x)(15 - 2$	$(5-2x) = 4x^3 - 80x^2 + 375x$ scores M1A1	
		,	(2)
	Mark (b), (c) and (d) together so that co	ontinued work with $x = 3.03$ in (c) and	(-)
	(d) can be taken as evidence that the c	candidate has chosen this value in (b).	
	Allow e.g. $\frac{dy}{dt}$ for $\frac{dV}{dt}$	and/or $\frac{d^2 y}{d^2 y}$ for $\frac{d^2 V}{d^2 y}$	
	dx dx	$\frac{dx^2}{dx^2}$	
(0)	$\left(\frac{dV}{dx}\right) = 12x^2 - 160x + 375$	M1: $x^n \rightarrow x^n$ seen at least once	M1A1
		Puts $\frac{dv}{dx} = 0$ (may be implied) and	
	$\frac{dV}{dt} = 0 \Longrightarrow x = \frac{160 \pm \sqrt{7600}}{24}$	attempts to solve a 3 term quadratic	M1
	dx 24	to find <i>x</i> . May be implied by correct	
	m = 2.02, 10.2	values.	-
	x = 5.05, 10.5 but $0 < x < 7.5$ so $x = 3.03$	required value.	A1
			(4)
(c)		Attempts the second derivative	
	$\left(\frac{d^2V}{d^2}\right) = 24x - 160 = 24(3.03) - 160$	$(x^n \rightarrow x^{n-1})$ and substitutes at least one	M1
	$\left(dx^2 \right)^{2}$ in 100 2 ((100)) 100	positive value of x from their $\frac{dV}{dx} = 0$	111
	d^2V	d^2V	
	$\frac{d^2 t}{dx^2} = 24(3.03) - 160 =$	$\Rightarrow \frac{d^2}{dx^2} < 0$: maximum	
	Fully correct proof for the maximum usi	ng a correct second derivative and using	
	x = awrt 3 only. There must be a substitution	on and there must be a reference to the sign	AI
	evaluation is incorrect, provided all the o	ther conditions are met, this mark can be	
	awarded. Accept statements such a	as "negative so x is the maximum"	
	Allow alternatives e.g. considers valu	es of V at, and either side of " 3.03 " or	
	values of dV/dx er	ther side of "3.03"	(2)
(d)		Substitutes a (positive) x from their	(2)
()	$V = 4(2.02)^3 + 80(2.02)^2 + 275(2.02)$	dV = 0 into the given V or a	M1
	V = 4(3.03) = 80(3.03) + 373(3.03)	$\frac{1}{dx} = 0$ Into the given v or a	IVI I
		"version" of V.	
	V = 513	Awrt 513	AI
	Note that $V = awrt 5$	13 only scores M1A1	
			(2) Total 10
	l		1014110

Question	G . h	Natar	Maular
Number	Scheme	INOTES	Marks
8(a)	(-4, 7) 5 (-1, 3) 5 Reflection in the y-axis. Needs to be a positive cubic with one maximum and one minimum in the second quadrant. The curve must at least reach both axes. It should be a curve and not a set of straight lines. Passes through (-6, 0) and (0, 5). Allow - 6 and 5 to be marked in the correct places and allow (0, -6) and (5, 0) as long as they are in the correct places. There must be a		B1
	 sketch but this mark can be awarded if the correct coordinates are given in the body of the script provided they correspond with the sketch. Ignore any other intercepts. If there is any ambiguity, the sketch takes precedence but if the correct coordinates are seen in the script, allow sign errors when transferring them to the sketch 		
	 Maximum at (-4, 7) and minimum at (-1, 3) in the second quadrant. Must be seen as correct coordinate pairs or as numbers marked on the axes that clearly indicate the position of the maximum or minimum. There must be a sketch but this mark can be awarded if the correct coordinates are given in the body of the script provided they correspond with the sketch. Ignore any other turning points. If there is any ambiguity, the sketch takes precedence but if the correct coordinates are seen in the script, allow sign errors when transferring them to the sketch 		
(b)	5 (0.5,	(2, 7) 3) 3)	
	A stretch in the <i>x</i> direction. Need to see $(x, y) \rightarrow (kx)$ must be no evidence of a chang The curve must at least reach both axes. It should	(x, y) where $k \neq 1$ for all points seen. There e in ant y coordinates. be a curve and not a set of straight lines.	B1
	Passes through (3, 0) and (0, 5). Allow 3 and 5 to be marked in the correct places and allow (0, 3) and (5, 0) as long as they are in the correct places. There must be a sketch but this mark can be awarded if the correct coordinates are given in the body of the script provided they correspond with the sketch. Ignore any other intercepts. If there is any ambiguity, the sketch takes precedence.		
	Minimum at $\left(\frac{1}{2}, 3\right)$ and maximum at (2, 7). in the coordinate pairs or as numbers marked on the axe maximum or minimum. There must be a sketch bu coordinates are given in the body of the script pro- Ignore any other turn If there is any ambiguity, the sk	he first quadrant. Must be seen as correct s that clearly indicate the position of the at this mark can be awarded if the correct ovided they correspond with the sketch. hing points. Tetch takes precedence.	B1
	v Q v/····	•	(3)
			Total 6

Question	Scheme	Notes	Marks
9(a)		M1: Use of a correct formula with $a = 20$, $r = 0.9$ and $n = 5$. Can be	
		implied by a correct answer.	
	$t_5 = ar^{n-1} = 20 \times 0.9^{3-1} = 13.122$	A 1, 12, 122 or 6561 A real view but	M1A1
		A1. 13.122 of $\frac{1}{500}$. Apply is would	
		just 13.1 is A0.	
	MR: Some are misreading fifth as f	fifteenth or fiftieth and find	
	$t_{15} = ar^{n-1} = 20 \times 0.9^{15-1} = 4.57$ or t_{15}	$=ar^{n-1}=20\times0.9^{-0-1}=0.114$	
	Allow M1A0 in th	nese cases.	
	Listing: Need to see a fully correct a	attempt to find the fifth term	
	e.g. 20, 18, 10.2, 14.38, 13.122 Must reach av	wrt 15 and intermediate decimals may	
	Just 13.122 with no working	g scores both marks	
			(2)
(b)	$r(1, r^n) = 20(1, 0, 0^8)$	M1: Use of a correct formula with	
	$S_{\rm s} = \frac{a(1-r)}{1-r} = \frac{20(1-0.9)}{1-0.9} = 113.9$	a = 20, r = 0.9 and $n = 8$	M1A1
	° 1-r 1-0.9	A1: 113.9 only	
	Listing: Need to see a ful	ly correct method	
	$e.g. \ 20 + 18 + 16.2 + 14.58 + \ldots + 9.565938 =$	= 113.9 (May be implied by awrt 114)	
			(2)
(c)	20	Correct S which can be simplified	
	$S_{\infty} = \frac{20}{1-0.9} (= 200)$	or un-simplified	B1
	1 0.5	M1: Attempts $S = S < 0.04$ (allow)	
	$20(1-0.9^{N})$	with Attempts $S_{\infty} = S_N < 0.04$ (allow)	
	$200 - \frac{1}{100} = 0.04$	A 1: Correct inequality in any form in	M1A1
	1-0.5	terms of N or n only.	
	$20 20(1-0.9^N)$	· · · · · · · · · · · · · · · · · · ·	
	Note that $\frac{20}{1-0.9} - \frac{0}{1-0.9}$	< 0.04 scores B1M1A1	
	1 0.5 1 0.5	Reaches the printed answer with	
	$0.9^{N} < 0.0002*$	intermediate working and with no	A1*
		errors or incorrect statements	
		M1. Come at attained to C 1 M	(4)
(d)		M1: Correct attempt to find N	
		they could be using $< $ or $= 1$ ook for	
		$\log 0.0002$	
	$(N >) \frac{\log 0.0002}{N - 81} \rightarrow N - 81$	$(N=)\frac{\log \cos 2}{\log 0.9}$ or	M1 A 1
	$(1, 2)$ $\frac{1}{\log 0.9} \rightarrow 1, -81$	$(N-)\log 0.0002$	WIIAI
		$(1) - j_{10}g_{0,9} 0.0002$	
		A1: 81 only Accent 81 only or	
		N/n = 81 but not $N/n > 81$	
	81 only with no working s	scores both marks	
			(2)
			Total 10
	•	•	•

Question Number	Scheme	Notes	Marks
10(i)	Examples:		
	$3\log_8 2 = \log_8 2^3$, $3\log_8 2 = \log_8 8$	Demonstrates a law or property of logs on	D1
	$3\log_8 2 = 1$, $\log_8 2 = \frac{1}{3}$, $2 = \log_8 64$	either of the constant terms.	BI
	Examples:		
	$\log_{8}(7-x) - \log_{8} x = \log_{8} \frac{(7-x)}{x}$	Demonstrates the addition or subtraction law of logs on two terms, at least one of which is in terms of r	B1
	$\log_8 0 + \log_8 x - \log_8 0 + x$	which is in terms of x.	
	For the B marks above look for work	as described and award the marks where	
	possible. If there is some correct an penalise for the i	nd some incorrect work, do not look to incorrect statements.	
	$\log_8 8(7-x) = \log_8 64x, \ \log_8 \frac{(7-x)}{x}$	$\frac{1}{x} = 1, \ \log_8 \frac{(7-x)}{8x} = 0, \ \log_8 \frac{8(7-x)}{x} = 2$	M1
	Correct processing leading to one NB needs to be	e of these equations or the equivalent. a correct equation.	
	$8(7-x) = 64x, \ \frac{(7-x)}{x} = 8, \ \frac{7-x}{8x} = 1, \ \frac{8(7-x)}{x} = 64$		A1
		Accept equivalents but must be exact e.g.	
	$x = \frac{7}{9}$	$\frac{56}{72}$ or 0.777 or 0.7 with a dot over the 7	A1
			(5)
(ii)	<u> </u>	$3^{y+1} = 10$	
	$3^{y} \times 3^{y} + 3 \times 3^{y} = 10 \text{ or } 3^{y} (3^{y} + 3) = 10 \text{ or } (3^{y})^{2} + 3 \times 3^{y} = 10 \text{ or } x = 3^{y} \Longrightarrow x^{2} + 3x = 10$		B1
	$x^2 + 3x - 10 = 0 \Longrightarrow x = \dots$	Correct attempt to solve a quadratic equation of the form $ax^2 + bx \pm 10 = 0$ (may be a letter other than x or may be 3^y etc.)	M1
	x = 2 or $x = 2$ and -5	Correct values.	A1
	$3^{y} = 2 \Longrightarrow y = \log_{3} 2 \text{ or } \frac{\log 2}{\log 3}$	Correct use of logs. Need to see $3^{y} = k \Rightarrow y = \log_{3} k \text{ or } \frac{\log k}{\log 3}, k > 0 \text{ which}$ may be implied by awrt 0.63. Allow lg and ln for log.	dM1
	$y = \log_3 2 \text{ or } y = \frac{\log 2}{\log 3}$	Cao (And no incorrect work using " -5 "). Give BOD but penalise very sloppy notation e.g. log3(2) for log ₃ 2 if necessary.	A1
			(5) Total 10
			i otal 10

(ii)	$3^{2y} + 3^{y+1} = 10$		
Way 2	$3^{2y} + 3^{y+1} = (3^2)^y + 3(9)^{0.5y}$ $\Rightarrow 9^y + 3(9)^{0.5y} = 10$	Correct quadratic in 9 ^{0.5y}	B1
	$x^2 + 3x - 10 = 0 \Longrightarrow x = 2(\text{or} - 5)$	M1: Correct attempt to solve a quadratic equation of the form $ax^2 + bx - 10 = 0$ (may be a letter other than <i>x</i> or may be 9 ^{0.5y} etc.) A1: Correct solution(s)	M1A1
	$9^{0.5y} = 2 \Longrightarrow 0.5y = \log_9 2 \text{ or } \frac{\log 2}{\log 9}$	Correct use of logs. Need to see $9^{0.5y} = k \Longrightarrow 0.5y = \log_9 k \text{ or } \frac{\log k}{\log 9}, k > 0$	dM1
	$y = 2\log_9 2 \text{ or } y = \frac{2\log 2}{\log 9}$	Cao (And no incorrect work using " -5 ")	A1
			(5)

Question Number	Scheme	Notes	Marks		
	Mark (a)(i) and (ii) together				
11(a)(i)	$(x\pm 4)^2$ and $(y\pm 5)^2$				
	Attempts to complete the square on <i>x</i> and <i>y</i> or	sight of $(x \pm 4)^2$ and $(y \pm 5)^2$. May be			
	implied by a centre of $(\pm 4, \pm 5)$. Or if consideri	ng $x^2 + y^2 + 2gx + 2fy + c = 0$, centre is			
	(±g,±f)).			
	Centre is (4, 5)	Correct centre	A1		
(**)	Correct answer scores both marks				
(11)	$r^{2} = (\pm "4")^{2} + (\pm "5")^{2} -$	·16 (Must be -16)	M1		
	Must read	h:			
	$r^{2} = \text{their} (\pm 4)^{2} + \text{their} (\pm 5)^{2} - 16 \text{ or } r =$	$=\sqrt{\text{their}(\pm 4)^2 + \text{their}(\pm 5)^2 - 16}$			
	or if using $x^2 + y^2 + 2gx + 2fx + c = 0, r^2$	$=g^{2}+f^{2}-c$ or $r=\sqrt{g^{2}+f^{2}-c}$			
	Must clearly be identifying	the radius or radius ²			
	r = 5		A1		
	Correct answer score	es both marks			
			(4)		
(b)	$MT^{2} = (20 - "4")^{2} + (12 - "5")^{2} (= 305)$	Fully correct method using Pythagoras for <i>MT</i> or <i>MT</i> ²	M1		
	Other methods may be seen for finding <i>MT</i> .				
	E.g. $\tan \theta = \frac{7}{16} \Longrightarrow \theta = 23.6,$	$MT = \frac{7}{\sin \theta} = 17.46$			
	Needs a fully correct method for <i>MT</i>				
	$MT = \sqrt{305}$	Must be exact	A1		
	Beware incorrect work leading to a correct answer e.g. $MT^{2} = \sqrt{(20-4)^{2}} + \sqrt{(12-5)^{2}} = \sqrt{256} + \sqrt{49} = \sqrt{305} \text{ scores M0}$				
			(2)		
(C)	$\left(MP^2\right) = MT^2 - "5"^2$	Correct method for MP or MP^2 where $MT > "5"$	M1		
	Area $MTP = \frac{1}{2} \times 5'' \times \sqrt{280}''$	Correct triangle area method	M1		
	5\[5][0][0][0][0][0][0][0][0][0][0][0][0][0]	cao	A1		
			(3)		
	Alternative fo	or (c):			
	$\cos PTM = \frac{"5"}{\sqrt{"305"}} \sin PMT = \frac{"5"}{\sqrt{"305"}}$	Correct method for angle PIM or PMT (NB $PTM = 73.36, PMT = 16.63)$	M1		
	Area $MTP = \frac{1}{2} \times "5" \times "\sqrt{305}" \times \sqrt{\frac{56}{61}}$	Correct triangle area method. May not work with exact values but needs to be a fully correct method using their values.	M1		
	5√70	Cao. Note that $5\sqrt{70} = 41.83$ which might imply a correct method.	A1		
			Total 9		

Question Number	Scheme	Notes	Marks
12(a)	p = 4 or $q = 5$	One correct value. May be implied by e.g. when $x = -1$, $y = 4$ or when $y = 2$, $x = 5$	B1
	p = 4 and $q = 5$	Both correct values. May be implied by e.g. when $x = -1$, $y = 4$ and when $y = 2$, $x = 5$	B1
			(2)
(b)	$AB^{2} = ("4"-2)^{2} + (-1 - "5")^{2}$ or $AB = \sqrt{("4"-2)^{2} + (-1 - "5")^{2}}$	Correct Pythagoras method using $(-1, "4")$ and $("5", 2)$ to find <i>AB</i> or AB^2	M1
	$(AB) = 2\sqrt{10}$	$2\sqrt{10}$ only	A1
			(2)
(c)	$M = \left(\frac{-1 + 5, -4, -4, -2}{2}\right) = (2, 3)$	Correct midpoint method. May be implied by at least one correct coordinate if no working is shown.	M1
	Gradient of $l_1 = -\frac{1}{3}$	Correct gradient of l_1 . Allow equivalent exact expressions. May be implied by a correct perpendicular gradient.	B1
	Perpendicular gradient = 3	Correct perpendicular gradient rule. This can be awarded for a correct value or a correct method e.g. $m = \frac{-1}{-\frac{1}{3}}$ or $\frac{-1}{3} \times m = -1 \Longrightarrow m =$	M1
	y - "3" = "3"(x - "2") or $y = mx + x \Longrightarrow "3" = "3" \times "2" + c \Longrightarrow c = \dots$	Correct straight line method using their midpoint and a "changed" gradient. If using $y = mx + c$, they must reach as far as a value for <i>c</i> .	M1
	y = 3x - 3	cao	A1
			(5)
	Alternative for last 4	marks of (c):	
	3x - y + c = 0	$ \begin{array}{c} \text{B1: "}^{3}x - y^{7} \\ \text{M1: } 3x - y + c = 0 \end{array} $	B1M1
	$3(2)-3+c=0 \Longrightarrow c=-3$	Correct method to find <i>c</i> using their values	M1
	y = 3x - 3	сао	A1
			Total 9

Question Number	Scheme	Notes	Marks
13(a)	$(APN =) 360^{\circ} - 314^{\circ} = 46^{\circ}$ $(APB =) 46^{\circ} + 52^{\circ} = 98^{\circ}$ or $(Reflex APB) = 314^{\circ} - 52^{\circ} = 262^{\circ}$ $(APB =) 360^{\circ} - 262^{\circ} = 98^{\circ}$ or Shows on a sketch the 314 and 46 And states $46^{\circ} + 52^{\circ} = 98^{\circ}$	Correct explanation that explains why APN is 46° (e.g. 360° – 314°) and adds that to 52° or shows/states that reflex APB = 262° and so APB = 360° - 262° = 98°. Do not be overly concerned how they use the letters to reference angles as long as the correct calculations are seen. Do not allow the use of $AB = 9.8$ from (b).	B1
			(1)
(b)	$(AB^2 =) 8.7^2 + 3.5^2 - 2 \times 8.7 \times 3.5 \cos 98^\circ$	Correct use of cosine rule. You can ignore the lhs for this mark so just look for $8.7^2 + 3.5^2 - 2 \times 8.7 \times 3.5 \cos 98^\circ$	M1
	$AB = 9.8 (\mathrm{km})$	Awrt 9.8 km (you can ignore their intermediate value for AB^2 provided awrt 9.8 is obtained for AB)	A1
			(2)
(c) Way 1	$\frac{"9.8"}{\sin 98^{\circ}} = \frac{3.5}{\sin PAB}$ or $3.5^{2} = 8.7^{2} + "9.8"^{2} - 2 \times 8.7 \times "9.8" \cos PAB$ $\implies PAB = \dots$	Correct sine or cosine rule method to obtain angle <i>PAB</i> . May be implied by awrt 21°	M1
	<i>PAB</i> = 20.66°	Allow awrt 21°. May be implied by a correct bearing.	A1
	Bearing is $180^{\circ} - 20.66^{\circ} - 46^{\circ}$	Fully correct method	M1
	$= 113^{\circ} \text{ or } 114^{\circ}$	Awrt 113° or awrt 114°	A1
(c) Way 2	$\frac{"9.8"}{\sin 98^{\circ}} = \frac{8.7}{\sin PBA}$ or $8.7^{2} = 3.5^{2} + "9.8"^{2} - 2 \times 3.5 \times "9.8" \cos PBA$ $\implies PBA = \dots$	Correct sine or cosine rule method to obtain angle <i>PBA</i> . May be implied by awrt 61° or 62°	M1
	<i>PBA</i> = 61.33°	Allow awrt 61° or awrt 62°. May be implied by a correct bearing.	A1
	Bearing is $52^{\circ} + 61.33^{\circ}$	Fully correct method	M1
	= 113° or 114°	Awrt 113° or awrt 114°	A1
			(4)
(c) Way 3	Let α = Bearing – 90°		
	$\tan \alpha = \frac{BC}{AC} = \frac{8.7 \cos 46^\circ - 3.5 \cos 52^\circ}{8.7 \sin 46^\circ + 3.5 \sin 52^\circ}$	Correct method for a	M1
	$\alpha = 23.33^{\circ}$	Allow awrt 23°. May be implied by a correct bearing.	A1
	Bearing is 90° + "23.33°"	Fully correct method	M1
	= 113° or 114°	Awrt 113° or awrt 114°	A1
			(4)
			Total 7

Diagram for Q13

Question Number	Scheme	Notes	Marks
14	$y = 8 - x$, $y = 14 + 3x - 2x^2$		
(a)	$8-x = 14+3x-2x^{2}$ or $y = 14+3(8-y)-2(8-y)^{2}$	Uses the given line and curve to obtain an equation in one variable.	M1
	$2x^{2}-4x-6=0 \Longrightarrow x = \dots$ or $2y^{2}-28y+90=0 \Longrightarrow y = \dots$	Solves their 3TQ as far as $x =$ or $y =$ Dependent on the first method mark.	dM1
	x = -1, x = 3 or y = 5, y = 9	Correct <i>x</i> values or correct <i>y</i> values	A1
	(-1, 9) (3, 5)	ddM1: Solves for y or x using at least one value of x or y.Dependent on both previous method marks.A1: Correct coordinates which do	ddM1A1
	Snecial case: Fully correct answers only y	not need to be paired so just look for correct values.	
	special case. <u>Funy correct</u> answers only v		(5)

WAY 2	Adds areas E, F and H and subtracts area H		
	\pm (curve-line) = \pm (14+3x-2x ² -(8-x))))	B1
	$14 + 3x - 2x^2 = 0 \Longrightarrow x = 3.5$	Correct value - may be seen on the diagram.	B1
	$\int (14+3x-2x^2) dx = 14x + \frac{3x^2}{2} - \frac{2x^3}{3} (+c)$ or	$ \begin{array}{l} \text{M1: } x^n \to x^{n+1} \text{ on at least two} \\ \text{terms for the curve } C \text{ or their} \\ \pm (\text{curve-line}) \end{array} $	M1A1
	$\int \pm (\operatorname{curve-line}) dx = \pm \left(\left(-\frac{2x^3}{3} \right) \right) \left(-\frac{2x^3}{3} \right) \left(-\frac{2x^3}{3$	A1: Correct integration but allow correct ft integration for slips on their \pm (curve-line)(ignore + c)	
	$\left[\dots\right]_{0}^{"3.5"} = \left(49 + \frac{147}{8} - \frac{343}{12}\right) - \left(0\right)\left(=\frac{931}{24}\right)$	Correct use of their upper limit "3.5" and 0 (which may be implied) either way round on their integrated curve <i>C</i> . Must be a "changed" function.	M1
	$\begin{bmatrix} 6x + 2x^2 - \frac{2x^3}{3} \end{bmatrix}_0^{3^{*}} = 6(3) + 2(3)^2 - \frac{2(3)^3}{3}(-0)$ Correct use of their "3" and 0 (which may be implied) either way round on their integrated ±(curve – line). Must be a "changed" function.		M1
	Area $R = \frac{931}{24} - 18 = \frac{499}{24}$	dM1: Subtracts (curve – line) area from curve area (dependent on <u>all</u> previous method marks) A1: Allow exact equivalents e.g. $20\frac{19}{24}$	dM1A1

WAY 3	Adds areas E, F and G and subtracts area G			
	$x = 0 \Rightarrow y = 8$ or $\pm (\text{line} - \text{curve}) = \pm (8 - x - (14 + 3x - 3x))$ or or $\int (8 - x) dx = 8x - \frac{x^2}{2}$	$2x^2))$	Correct <i>y</i> intercept - may be seen on the diagram. Or correct \pm (curve-line) or correct integration of $8 - x$	B1
	$14 + 3x - 2x^2 = 0 \Longrightarrow x = 3.5$	Correct diagram	value - may be seen on the n.	B1
	$\int \pm (\operatorname{line} - \operatorname{curve}) dx = \pm \left(\frac{2x^3}{3} - 6x - 2x^2\right) (+c)$	M1: x^n their $\pm ($ A1: Conft integration $\pm ($ curv	→ x^{n+1} on at least two terms for (curve-line) rect integration but allow correct ration for slips on their e-line)(ignore + c)	M1A1
	$\left[\left[\left[\frac{2x^3}{3} - 6x - 2x^2 \right] \right]_{3}^{3.5} = \frac{2(3.5)^3}{3} - 6(3.5)$)-2("3.5	$(5'')^2 - \left(\frac{2("3'')^3}{3} - 6("3'') - 2("3'')^2\right)$	M1
	Correct use of their "3" and "3.5" either way round on their integrated \pm (curve – line). Must be a "changed" function			
	Trapezium: $\frac{1}{2} \times "3.5" ("8" + "4.5") \left(= \frac{175}{8} \right)$ or $\left[8x - \frac{x^2}{2} \right]_{0}^{"3.5"} = 8(3.5) - \frac{(3.5)^2}{2} (-0)$	Correct trapeziu using th integrat correct	method for the area of the im between $x = 0$ and $x = "3.5"$ heir values. If using the ion, the integration must be and used correctly.	M1
	Area $R = \frac{175}{8} - \frac{13}{12} = \frac{499}{24}$	dM1: S trapeziu previou A1: All	ubtracts (line – curve) area from im area (dependent on <u>all</u> s method marks) ow exact equivalents e.g. $20\frac{19}{24}$	dM1A1
				(8) Total 13

Q14(b) COMBINED SCHEME

B1 $x = 0 \rightarrow y = 8$ (May be seen on the diagram)

OR: Correct integration of 8 - x, giving $8x - \frac{x^2}{2}$

OR: $\pm (curve - line) = \pm (14 + 3x - 2x^2 - (8 - x))$

- B1 $14 + 3x 2x^2 = 0 \rightarrow x = 3.5$ (May be seen on the diagram).
- M1 Integration of the curve quadratic or their $\pm(curve line)$ quadratic expression with $x^n \rightarrow x^{n+1}$ for at least two terms.
- A1 Completely correct integration of the quadratic expression, even if mistakes have been made in 'simplifying' their quadratic expression. Ignore "+ c". (So the M1A1 is essentially given for correct integration).

N.B. "integrated curve" = "
$$\left(14x + \frac{3x^2}{2} - \frac{2x^3}{3}\right)$$
"
"integrated (curve - line)" = " $\left(6x + 2x^2 - \frac{2x^3}{3}\right)$ "

Next two M marks for any one of the following three variations, with correct use of their limits on their integrated function (must be a "changed" function) or correct method for the appropriate trapezium using their values:

M1 1(i) ["integrated curve"]
$$"3.5"_{3"} = \cdots$$
 $\left(\frac{31}{24}\right)$

M1 1(ii)
$$\left[8x - \frac{x^2}{2}\right]_{0}^{"3"} = \cdots \text{ or } \frac{1}{2} \times "3" \times ("8 + "5")$$
 $\left(\frac{39}{2}\right)$

M1
 2(i)
 ["integrated curve"]
$${}^{"}_{0}^{3.5"} = \cdots$$
 $\left(\frac{931}{24}\right)$

 M1
 2(ii)
 ["integrated $\pm (curve - line)"] {}^{"}_{0}^{3"} = \cdots$
 (18)

 M1
 3(i)
 ["integrated $\pm (line - curve)"] {}^{"}_{3.5"}^{"} = \cdots$
 $\left(\frac{13}{12}\right)$

 M1
 3(ii)
 $\left[8x - \frac{x^2}{2}\right] {}^{"}_{0}^{3.5"} = \cdots$
 or
 $\frac{1}{2} \times "3.5" \times ("8 + "4.5")$
 $\left(\frac{175}{8}\right)$

- dM1 (Dependent on all previous method marks). Attempts the correct combination, which must be either 1(i) + 1(ii), or 2(i) 2(ii), or 3(ii) 3(i).
- A1 $\frac{499}{24}$ or exact equivalent, e.g. $20\frac{19}{24}$

Question Number	Scheme	Notes	Marks
15	$(1+kx)^n = 1 + nkx + \frac{n(n-1)}{2}k^2x^2$		
(a)	$\frac{n(n-1)}{2}k^2 = 126k \text{ or } \frac{n(n-1)}{2}k = 126k \text{ or } {}^nC_2k^2 = 126k \text{ or } {}^nC_2k = 126k$		
	kn(n-1) = 2	252*	
	Obtains the printed equation from $\frac{n(n-1)}{2}k^2 = 126k$ or $\frac{n(n-1)}{2}k^2x^2 = 126kx^2$		
	Note that these are acc	ceptable proofs:	
	$\frac{n(n-1)}{2}k^2x^2$ followed by $\frac{n(n-1)}{2}$	$k = 126 \Longrightarrow nk(n-1) = 252$	
	$\frac{n(n-1)}{2}k^2x^2 \text{ followed by } n(n-1)k^2 = 252k \Longrightarrow nk(n-1) = 252$		
		Connect equation (eq)	(2)
(0)	<i>nk</i> = 36	Confect equation (de).	B1
	36(n-1) = 252 or $36\left(\frac{36}{k} - 1\right) = 252$	Uses a valid method with their nk = 36 and the given equation to obtain an equation in <i>n</i> or <i>k</i> only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only.	M1
	$36n - 36 = 252 \Longrightarrow n = 8$	dM1: Solves, using a correct method,	
	or	to obtain a value for <i>n</i> or <i>k</i>	dM1A1
	$\frac{36}{k} - 1 = 7 \Longrightarrow k = 4.5$	A1: Correct value for n or k	
	$n = 8 \Longrightarrow k = 4.5$ or $k = 4.5 \Longrightarrow n = 8$	Correct values for n and k	A1
	Special Case: Some candidates have a second term of nx which gives $n = 36$ and then solve $kn(n-1) = 252$ to give $k = 0.2$. This scores a special case of B1.		
	Generally, to score the method marks, candidates must be solving 2 equations		
		к. 	(5)
(c)	$\frac{n(n-1)(n-2)}{3!}k^{3}(x^{3})$	Correct coefficient. May be implied by $56k^3$ or "8" C_3 " k " ³ with or without x^3 . If no working is shown, you may need to check their values.	B1ft
	$=\frac{8(8-1)(8-2)}{3!}4.5^{3}=\dots$	Substitutes their values correctly including integer n , $n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values.	M1
	$= 5103 \qquad \qquad \text{Allow } 5103x^3$		
	Answer only of 5103 s		(3)
			Total 10

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom