Vrite your name here Surname	Other	names
Pearson Edexcel nternational Advanced Level	Centre Number	Candidate Number
Core Math	aomati	cc C12
Advanced Subsidia		
	ry Morning	Paper Reference WMA01/01
Advanced Subsidian Wednesday 25 May 2016 –	ry Morning	Paper Reference

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 125.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Leave blank

$(1+px)^8$ are given by	
$1 + 12x + qx^2$	
where p and q are constants.	
Find the value of p and the value of q .	
That the value of p and the value of q .	(5

	www.dynamicpapers.com	
Question 1 continued		Leave blank
		Q1
	(Total 5 marks)	

2. Find the range of values of x for which

(a)
$$4(x-2) \leqslant 2x+1$$

(2)

(b)
$$(2x-3)(x+5) > 0$$

(3)

Leave blank

(c) **both**
$$4(x-2) \le 2x+1$$
 and $(2x-3)(x+5) > 0$

(1)

www.dyn	www.dynamicpapers.com_	
		Leave
		blank
Question 2 continued		
		03
		Q2
	(TD 4 1 6 1 1 1	
	(Total 6 marks)	

Leave blank

3. Answer this question without a calculator, showing all your working and giving your answers in their simplest form.

$$4^{2x+1} = 8^{4x}$$

(3)

(ii) (a) Express

(i) Solve the equation

$$3\sqrt{18} - \sqrt{32}$$

in the form $k\sqrt{2}$, where k is an integer.

(2)

(b) Hence, or otherwise, solve

$$3\sqrt{18} - \sqrt{32} = \sqrt{n}$$

(2)

Question 3 continued		Leave
		Q3
	(Total 7 marks)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

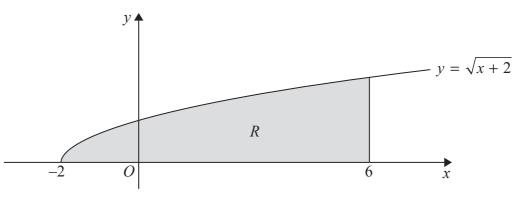


Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \sqrt{x+2}$, $x \ge -2$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 6

The table below shows corresponding values of x and y for $y = \sqrt{x+2}$

x	-2	0	2	4	6
y	0	1.4142	2		2.8284

(a) Complete the table above, giving the missing value of y to 4 decimal places.

(1)

(b) Use the trapezium rule, with all of the values of y in the completed table, to find an approximate value for the area of R, giving your answer to 3 decimal places.

(3)

Use your answer to part (b) to find approximate values of

(c) (i)
$$\int_{-2}^{6} \frac{\sqrt{x+2}}{2} \, dx$$

(ii)
$$\int_{-2}^{6} \left(2 + \sqrt{x+2}\right) \mathrm{d}x$$

(4)

www.dynamicpapers.co	m
	Leave
Question 4 continued	blank
Question 4 continued	

www.dynamicpapers.co	
Question 4 continued	Le bl:
	Q4
	(Total 8 marks)

5. (i)
$$U_{n+1} = \frac{U_n}{U_n - 3}, \quad n \geqslant 1$$

Given $U_1 = 4$, find

(a) U_2

(1)

(b) $\sum_{n=1}^{100} U_n$

(2)

(ii) Given

$$\sum_{r=1}^{n} (100 - 3r) < 0$$

find the least value of the positive integer n.

1	4	١
	J	,

www.dynamicpapers.co	www.dynamicpapers.com	
· · · · · ·	Leave	
Question 5 continued	blank	
Question 5 continued		

Question 5 continued

www.dynamicpa	ipers.com
Question 5 continued	Leave
(Total o	Q5 (marks)

Leave blank

	www.dynamicpape	ers.cor
6.	(a) Show that $\frac{x^2 - 4}{2\sqrt{x}}$ can be written in the form $Ax^p + Bx^q$, where A, B, p and q	
•	(a) show that $2\sqrt{x}$ can be written in the form $1x + 2x$, where $1x, 2x, p$ and q	
	are constants to be determined.	
		(3)
		()
	(b) Hence find	
	$\int \frac{x^2 - 4}{2\sqrt{x}} dx, x > 0$	
	giving your answer in its simplest form.	
	giving your answer in its simplest form.	(4)
		(+)

	Leave
	blank
Question 6 continued	
	0.6
	Q6
(Total 7 marks)	

DO NOT WRITE IN THIS AREA

Given that (x - 2) is a factor of f(x),

(a) use the factor theorem to show that 2a + b = -7

(2)

Given also that when f(x) is divided by (x + 1) the remainder is -36

(b) find the value of a and the value of b.

(4)

f(x) can be written in the form

$$f(x) = (x - 2)Q(x)$$
, where $Q(x)$ is a quadratic function.

- (c) (i) Find Q(x).
 - (ii) Prove that the equation f(x) = 0 has only one real root.

You must justify your answer and show all your working.

(4)

CONOT WRITE IN THIS AR

www.dynamicpapers.co	www.dynamicpapers.com	
	Leave blank	
Question 7 continued		

	Leave blank
Question 7 continued	Ulalik

	Leave
	blank
Question 7 continued	
	Q7
(Total 10 marks)	
(Total To marks)	

Leave blank

8. In this question the angle θ is measured in degrees throughout.

(a) Show that the equation

$$\frac{5+\sin\theta}{3\cos\theta} = 2\cos\theta, \qquad \theta \neq (2n+1)90^{\circ}, \quad n \in \mathbb{Z}$$

may be rewritten as

$$6\sin^2\theta + \sin\theta - 1 = 0$$

(b) Hence solve, for $-90^{\circ} < \theta < 90^{\circ}$, the equation

$$\frac{5 + \sin \theta}{3\cos \theta} = 2\cos \theta$$

Give your answers to one decimal place, where appropriate.

(4)

(3)

Question 8 continued		Lea blaı
Question 8 continued		blaı
Question 8 continued		
		Q8
		20
	(Total 7 marks)	

Leave blank

9. The first term of a geometric series is 6 and the common ratio is 0.92	
For this series, find	
(a) (i) the 25 th term, giving your answer to 2 significant figures,	
(ii) the sum to infinity.	
(ii) the sum to minity.	(4)
The sum to n terms of this series is greater than 72	
(b) Calculate the smallest possible value of <i>n</i> .	
	(4)

Question 9 continued	Leave blank
(Total 8 marks)	Q9
(10tal 6 marks)	

- **10.** The curve C has equation $y = \sin\left(x + \frac{\pi}{4}\right)$, $0 \leqslant x \leqslant 2\pi$
 - (a) On the axes below, sketch the curve C.

(2)

(b) Write down the exact coordinates of all the points at which the curve *C* meets or intersects the *x*-axis and the *y*-axis.

(3)

(c) Solve, for $0 \le x \le 2\pi$, the equation

$$\sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

giving your answers in the form $k\pi$, where k is a rational number.

(4)

www.dynamicpapers	www.dynamicpapers.com		
	Lea		
Question 10 continued	bla	ınk	
Question to continued			
	_		
	_		

DO NOT WRITE IN THIS AREA

www.dynamicpape		m
estion 10 continued		

11.

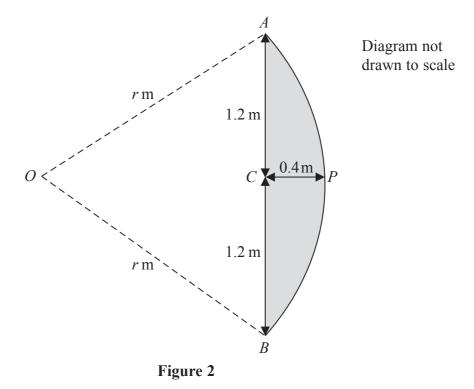


Figure 2 shows the design for a sail APBCA.

The curved edge APB of the sail is an arc of a circle centre O and radius r m.

The straight edge ACB is a chord of the circle.

The height AB of the sail is 2.4 m.

The maximum width *CP* of the sail is 0.4 m.

(a) Show that r = 2

(2)

(b) Show, to 4 decimal places, that angle AOB = 1.2870 radians.

(2)

(c) Hence calculate the area of the sail, giving your answer, in m², to 3 decimal places.

(4)

www.dynamicpapers.co	www.dynamicpapers.com		
	Leave blank		
Question 11 continued	Diank		

	Leave blank
Question 11 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	— O11
	Q11
(Total 8 mark	(s)

Leave blank

12.

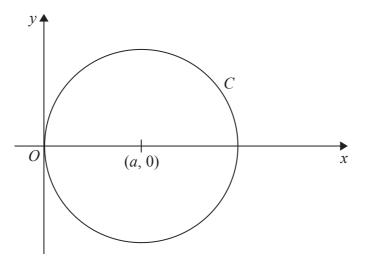


Figure 3

Figure 3 shows a circle *C*

C touches the y-axis and has centre at the point (a, 0) where a is a positive constant.

(a) Write down an equation for C in terms of a

(2)

Given that the point P(4, -3) lies on C,

(b) find the value of a

(3)

Question 12 continued	Leave blank
Question 12 continued	
	Q12
(Total 5 marks)	
	1 7

DO NOT WRITE IN THIS AREA

$$2\log_2 y = 5 - \log_2 x$$
 $x > 0, y > 0$

may be written in the form $y^2 = \frac{k}{x}$ where k is a constant to be found.

(3)

(b) Hence, or otherwise, solve the simultaneous equations

$$2\log_2 y = 5 - \log_2 x$$

$$\log_x y = -3$$

for
$$x > 0, y > 0$$

(5)

www.dynamicpapers.com	m
	Leave
Question 13 continued	blank

Question 13 continued		Leave
	Question 13 continued	
(Total 8 marks)		Q13
·	(Total 8 marks)	

www.dynamicpapers.com

Leave blank

14.

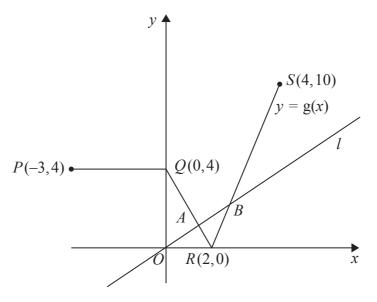


Figure 4

Figure 4 shows a sketch of the graph of y = g(x), $-3 \le x \le 4$ and part of the line l with equation $y = \frac{1}{2}x$

The graph of y = g(x) consists of three line segments, from P(-3,4) to Q(0,4), from Q(0,4) to R(2,0) and from R(2,0) to S(4,10).

The line *l* intersects y = g(x) at the points *A* and *B* as shown in Figure 4.

(a) Use algebra to find the *x* coordinate of the point *A* and the *x* coordinate of the point *B*.

Show each step of your working and give your answers as exact fractions.

(6)

(2)

(b) Sketch the graph with equation

$$y = \frac{3}{2}g(x), \quad -3 \leqslant x \leqslant 4$$

On your sketch show the coordinates of the points to which P, Q, R and S are transformed.

	/				
×					2
Х					2
		1	à	٧	
Z (i)	ė	٩	r	7	
×	9		۵	c	>
< :				9)	
21	Ú	в.	Л	К	
M				ν	/
	Z		Z	2	
24	7		7	۲	
SJE	É			ν	
		7	Z	S	/
14	Ě		Р	۲	
⟨∜	S,	a	Ľ		
×		₹	9	κ	>
	^				١.
4	w.	а			
м	u	r	1	r	
< 1	₹		♂	n	<
28				ĸ.	2
١,	4	2	S	ď	١.
e.	Ø		7	٩,	/
×	_	ĸ.	_	6	
< 5	₹	7	₹	9	
21		2	Z		2
M	×	,	•	ν	/
⟨"					
SJ	-			ν	۲.
$^{\sim}$		и	7		/
M				ľ	/
< 2	~	_	4	5	
×	. 7	₹	7	۲	2
	Χ				
4		ь	4	N	/
м	ш		a	r	
< 0	Ì	7	₹	7	
21	12	۷	2	ς	2
M	r	7	7	"	/
7	v		2		/
>8	-	۰	9	٣	>
S i		ü		ν	≺
21	12				
V	=	۰	۰	ν	/
< 1	畅	ù	۷		
×	-			ĸ,	>
SJ	4	2	2	Ì	۲.
Δ	ď	á	ρ	P.	/
×	7				>
< :					⋖
4		4	ú	k	2
м	rs	7	3	7	/
0	Ċ	è	۷		<
М	17	₹	Я	К	>
SJ	ĸ.	2	я	p	
		۰,	7		/
78				ľ	7
< :	Sal	ø	₹		
м				í.	2
					۲.
$^{\prime}$	4	\leq	/		/
M	pθ	현	٩	ď	>
ΚI			d	D	<
29	9	и	ρ	۲	>
\vee	۷.	2	7	2	/
4	۳	٦		N	/
Ж		_	1	ĸ	
S	₹	y	٠	*)	
Х					2
V	1				1
	×				
	×				К

				ν	
			ì		
1					
	È				
1					
	6	i	'n	ν	
8	2	Ë	2	ġ	
j	2	Š	2	Š	
į	2		2	Ķ	
200	2	Š	2	Š	
	Ž	2	2	Š	
i	Ž	2	3	5	
į	Ž		2		
į	Ž	2			
į	2				
i					
į) M N		2		
	Ž K K D				
	ZXM				
	2 X M N D Z e z				
				で	

Question 14 continued	blank

				2	
		S			
		Ì			
		G			
			ù		
		ý			
				6	
			í		
		à			
				į	
					ă
ζ	>	₫		₫	P
S		Α		S	2
8		Α		Ė	2
2		Α		į	
5		3			2
2		Α			3
3		Α			
3	3	Α			
2		Α			
3	3	Α			
		Α			
3		Α			
	3	Α			
		Α			
		Α			
		Α			
	?	Α			
	?	Α			
	?	Α			
		Α		* E	
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α		**************************************	
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			
		Α			

Question 14 continued		

www.dyr	namicpapers.com	
		Leave blank
Question 14 continued		Dialik
		Q14
	(Total 8 marks)	

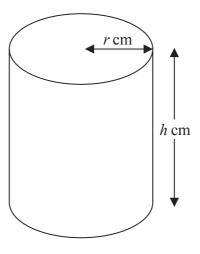


Figure 5

Figure 5 shows a design for a water barrel.

It is in the shape of a right circular cylinder with height h cm and radius r cm.

The barrel has a base but has no lid, is open at the top and is made of material of negligible thickness.

The barrel is designed to hold 60 000 cm³ of water when full.

(a) Show that the total external surface area, $S \text{ cm}^2$, of the barrel is given by the formula

$$S = \pi r^2 + \frac{120\,000}{r}$$

(3)

(b) Use calculus to find the minimum value of *S*, giving your answer to 3 significant figures.

(6)

(c) Justify that the value of S you found in part (b) is a minimum.

(2)

www.dynamicpapers.co	m
· · · · · · · · · · · · · · · · · · ·	Leave
	blank
Question 15 continued	

nestion 15 continued	

	Leave blank
Question 15 continued	Dialik
Question 15 continued	
	Q15
(Total 11 marks)	
(

www.dynamicpapers.com

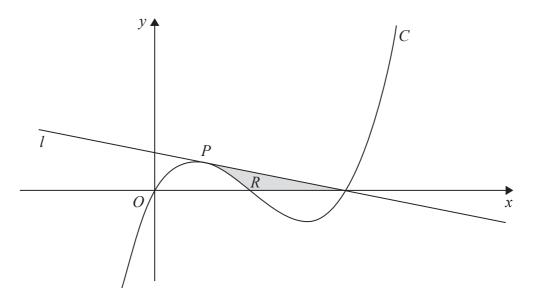


Figure 6

Figure 6 shows a sketch of part of the curve C with equation

$$y = x(x-1)(x-2)$$

The point P lies on C and has x coordinate $\frac{1}{2}$

The line l, as shown on Figure 6, is the tangent to C at P.

(a) Find $\frac{dy}{dx}$

(2)

(b) Use part (a) to find an equation for l in the form ax + by = c, where a, b and c are integers.

(4)

The finite region R, shown shaded in Figure 6, is bounded by the line l, the curve C and the x-axis.

The line l meets the curve again at the point (2, 0)

(c) Use integration to find the exact area of the shaded region R.

(6)

	blank
Question 16 continued	

www.dynamicpapers.co	www.dynamicpapers.com	
Question 16 continued	Leave blank	

