

Mark Scheme (Results)

January 2017

Pearson Edexcel International Advanced Subsidiary Level In Core Mathematics C12 (WMA01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017 Publications Code WMA01_01_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use the <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question Number		Scheme	Marks
1(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{3x^2}{3} - 2 \times 2x + 3$	M1: $x^n \rightarrow x^{n-1}$ or $5 \rightarrow 0$ A1: Any 3 of the 4 terms differentiated correctly - this could be 2 terms correct and $5 \rightarrow 0$ (allow simplified or un-simplified for this mark, including $3x^0$ for 3)	M1A1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) x^2 - 4x + 3$	Cao. All 3 terms correct and simplified and on the same line and no + 0. (Do not allow $1x^2$ for x^2 or x^1 for x or $3x^0$ for 3). Condone poor notation e.g. omission of $dy/dx =$ or if they use $y =$	A1
	Candidates who mult	iply by 3 before differentiating:	
	e.g. $\left(\frac{x^3}{3} - 2x^2 + 3x + 5\right) \times 3 =$	$x^{3}-6x^{2}+9x+15 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^{2}-12x+9$	
	Scores M1A0A0 but could	recover in (a) if they then divide by 3	
	If they persist with $\frac{dy}{dt} = 3x^2 - 3x^2$	-12x+9 in (b), allow full recovery in (b)	
	dx		(3)
(b)		M1: Attempt to solve their 3TO from	(3)
	$x^2 - 4x + 3 = 0 \Longrightarrow x = 1, 3$	part (a) as far as $x =$ (see general guidance for solving a 3TQ). If no working is shown and the roots are incorrect for their 3TQ, score M0 here but the second method mark below is still available. A1: Correct values (may be implied by their inequalities e.g. a correct quadratic followed by just $x > 1$ and $x > 3$ could score M1A1 here)	M1A1
		Chooses outside region	
	<i>x</i> <"1", <i>x</i> >"3"	(x < their lower limit x > their upper limit). Do not award simply for diagram or table.	M1
	x < 1, x > 3 Correct answer. Allow the correct regions separated by a comma or written separately and allow other notation e.g. $(-\infty, 1) \cup (3, \infty)$. Do not		
	allow $1 > x > 3$ or $x < 1$ and $x > 3$ (These score M1A0). ISW if possible		A1
	followed by $r > 3(or)$ $r < 1 can s$	$1 > \lambda > 3$ can score WIAL $\lambda > 3$, $\lambda > 1$ score M1A1 Fully correct answer with no	
	working scores both marks. A	nswers that are otherwise correct but use	
	\leq, \geq lose final mat	rk as would $[-\infty,1] \cup [3,\infty]$.	
			(4)
			(7 marks)

Question	Scheme		
Number	M		
2 (a)	$(x \pm 4)(y \pm 2)$	Attempts to complete the square on x and y or sight of $(x \pm 4)$ and $(y \pm 2)$. May be implied by a centre of $(\pm 4, \pm 2)$. Or if considering $x^2 + y^2 + 2gx + 2fy + c = 0$, centre is $(\pm g, \pm f)$.	M1
	Centre $C = (4, -2)$	Correct centre (allow $x = 4, y = -2$) But not $g =, f =$ or $p =, q =$ etc.	A1
	Correct	answer scores both marks	
			(2)
(b)	$r^2 = 12 + (\pm 4)^2 + (\pm 2)^2$	Must reach: $r^{2} = 12 + \text{their } (\pm 4)^{2} + \text{their } (\pm 2)^{2}$ or $r = \sqrt{12 + \text{their } (\pm 4)^{2} + \text{their } (\pm 2)^{2}}$ or if considering $x^{2} + y^{2} + 2gx + 2fx + c = 0,$ $r^{2} = g^{2} + f^{2} - c$ Or $r = \sqrt{g^{2} + f^{2} - c}$ Must clearly be identifying the radius or radius ² May be implied by a correct exact radius or awrt 5.66 $r = \sqrt{32}$. Accept exact equivalents	M1
	$r = \sqrt{32}$	such as $4\sqrt{2}$. $r =$ not needed but must clearly be the radius. Do not allow $\pm\sqrt{32}$ unless minus is rejected	A1
	Correct answer scores both marks		
(c)	$x = 0 \Longrightarrow y^2 + 4y - 12$	$= 0$ Correct quadratic. Allow $16 + (y+2)^2 = 32$	(2) B1
	$(y+6)(y-2) = 0 \Longrightarrow y$	= Attempts to solve a 3TQ that has come from substituting $x = 0$ or y = 0 into the given equation or their 'changed' equation. May be implied by correct answers for their quadratic.	M1
	y = 2, -6 or $(0, 2)$ and $($	Correct y values or correct coordinates. Accept sight of these for all 3 marks if no incorrect working seen but must clearly be y values or correct coordinates. This may be implied by the correct roots of a quadratic in y.	A1
			(7 marks)

Question Number	Scheme		Marks
3 (a)	$S = r\theta = 7 \times 0.8 = 5.6 \text{(cm)}$	$M1: \text{Uses } S = r\theta$ $A1: 5.6 \text{ oe e.g. } 28/5$	M1A1
	Note that if the 0.8 is converted to this angle may be rounded of	degrees e.g. $0.8 \times \frac{180}{\pi} = 45.8366$, or truncated when attempting	
	$\frac{45.8366}{360} \times 2 \times \pi \times 7 \text{ for the}$	M1 so allow A1 for awrt 5.6	
(b)	$\angle POC = \frac{\pi}{2} - 0.8 = \text{awrt } 0.771$ Answers in degrees e.g. $180 - 90 - 0.8$	M1: Attempts to find $\frac{\pi}{2} - 0.8$ or $\pi - \frac{\pi}{2} - 0.8$. Allow an attempt to find θ from $\theta + \frac{\pi}{2} + 0.8 = \pi$. Accept as evidence awrt 0.77 A1: awrt 0.771 only can score M1A0 $\times \frac{180}{4} (= 44.163)$	(2) M1A1
	c.g. 100-90-0.0	$\frac{1}{\pi}(-44.105)$	(2)
(c)	$4^{2} + 5^{2} - 2 \times 4 \times 5 \cos' 0.771'$ or $\sqrt{4^{2} + 5^{2} - 2 \times 4 \times 5 \cos' 0.771'}$	Correct use of the cosine rule to find <i>CP</i> or <i>CP</i> ² . NB 0.771 radians is awrt 44 degrees. Ignore lhs for this mark and look for e.g. $4^2 + 5^2 - 2 \times 4 \times 5 \cos' 0.771$ or 44'	M1
	$CP^{2} = 4^{2} + 5^{2} - 2 \times 4 \times 5 \cos 0.771$ or $CP = \sqrt{4^{2} + 5^{2} - 2 \times 4 \times 5 \cos 0.771}$	A correct expression for CP or CP^2 with lhs consistent with rhs. Allow awrt 0.77 radians or awrt 44 degrees. (May be implied if a correct numerical value is used in subsequent work)	A1
	Perimeter = $4+5+2\times7+5.6+3.5$	$4+5+2\times7$ + their AQ + their CP. Need to see all 6 lengths but may be implied by e.g. $23+5.6+3.5$	M1
	= 32.11 (cm)	Awrt 32.11 (ignore units)	A1 (4)
			(8 marks)

Question Number	Scheme		Marks
4 (a)	$S_{9} = 54$ $\Rightarrow 54 = \frac{9}{2}(2a + 8d)$ or $\Rightarrow 54 = \frac{9}{2}(a + a + 8d)$	Uses a correct sum formula with $n = 9$ and $S_{9} = 54$	M1
	$\Rightarrow a + 4d = 6^*$	CSO	A1*
	List	ing:	
	a+a+d+a+2d	++a+8d = 54	
	\Rightarrow 9a + 36a	d = 54	
	Scores M1 for attempting to su	um 9 terms (both lines needed)	
	C C	or	
	a+a+d+a+2d+a+3d+a+4d+a+5d+a+6d+a+7d+a+8d=54		
	Scores M1 on its own and then	AT II they complete correctly.	
			(2)
(b)	$a+7d = \frac{1}{2}(a+6d)$ or $\frac{1}{2}(a+7d) = a+6d$	Uses $t_8 = \frac{1}{2}t_7$ or $\frac{1}{2}t_8 = t_7$ to produce one of these equations.	M1
	$\Rightarrow 6 - 4d + 7d = \frac{1}{2} (6 - 4d + 6d)$ $\Rightarrow d = \dots$	Uses the given equation from (a) and their second linear <u>equation</u> in a and d and proceeds to find a value for either a or d .	M1
	$\Rightarrow d = -1.5, a = 12$	A1: Either $d = -1.5$ (<i>oe</i>) or $a = 12$ A1: Both $d = -1.5$ (<i>oe</i>) and $a = 12$	A1A1
	Note that use of $\frac{1}{2}t_8 = t_7$ in	(b) gives $a = 30$ and $d = -6$	
			(4)
			(6 marks)

Question	www.dynamicpapers.com		
Number	Schem	ne	Marks
5 (a)(i)	$\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9 = y - 2$	M1: $\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9$ or $\log_3\left(\frac{x}{9}\right) = \log_3 x + \log_3 \frac{1}{9}$ Correct use of the subtraction rule or addition rule. Ignore the presence or absence of a base and any spurious "= 0" A1: y-2	M1A1
	An answer left as \log_3	3^{y-2} scores M1A0	
	Note that $\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 x$	$g_3 9 = y - \log_3 9$ scores M1A0	
(ii)	$\log_{3}\sqrt{x} = \log_{3}x^{\frac{1}{2}} = \frac{1}{2}\log_{3}x = \frac{1}{2}y$	$\frac{1}{2}y$ or equivalent	B1
			(3)
(b)	$2\log_{3}\left(\frac{x}{9}\right) - \log_{3}\sqrt{x} = 2$	$\Rightarrow 2(y-2) - \frac{1}{2}y = 2$	
	poor use of brackets e.g. $2(y-2) = 2y - 2y$	2 and also the slip $(y-2) - \frac{1}{2}y = 2$	M1
	Tor this m	lark)	
	$\Rightarrow y = 4$	Correct value for y.	AI
	Note that arriving at $(y-2)^2 - \frac{1}{2}y = 2$ ab	how scores M0 (not linear) but does $y = 4$ not being derived correctly	
	$\log_3 x = 4 \Longrightarrow x = 3^4$	Correct method for undoing log. Dependent on the first M	d M1
	$\Rightarrow x = 81$	cao	A1
			(4)
			(7 marks)
	$2\log_3\left(\frac{x}{9}\right) - \log_3\sqrt{x}$	$= \log_3\left(\frac{\left(\frac{x}{9}\right)^2}{\sqrt{x}}\right)$	
	or $2\log_3\left(\frac{x}{9}\right) - \log_3\sqrt{x} = 2\log_3 x - 21$	$\log_{3} 9 - \log_{3} \sqrt{x} = \log_{3} \frac{x^{2}}{\sqrt{x}} + \dots$	M1
	Combines two log terms in x corre	ectly to obtain a single log term	
Alt 1 (b)	$\log_{3}\left(\frac{\left(x/9\right)^{2}}{\sqrt{x}}\right) = 2$		
	$\log_3\left(\frac{x^2}{\sqrt{x}}\right) = 6$	Correct equation	Al
	$\left(\frac{\left(x/9\right)^2}{\sqrt{x}}\right) = 3^2 \operatorname{or} \left(\frac{x^2}{\sqrt{x}}\right) = 3^6$	Correct method for undoing log. Dependent on the first M	d M1
	$\Rightarrow x = 81$	сао	A1

Alt 2 (b) Uses $x = 3^{y}$	$2\log_{3}\left(\frac{x}{9}\right) - \log_{3}\sqrt{x} = 2\log_{3}\left(\frac{3^{y}}{9}\right) - \log_{3}3^{\frac{y}{2}} = \log_{3}\left(\frac{3^{\frac{3y}{2}}}{81}\right)$ Combines logs correctly		M1
	$\log_{3}\left(\frac{3^{\frac{3y}{2}}}{81}\right) = 2 \Longrightarrow y = 4$	Correct value for <i>y</i>	A1
	$\log_3 x = 4 \Longrightarrow x = 3^4$	Correct method for undoing log. Dependent on the first M	d M1
	$\Rightarrow x = 81$	cao	A1

Question		www.dynamicpape	rs.com
Number	Sc	heme	Marks
6(a)(i)	$\frac{3}{2}$	Accept exact equivalents	B1
(ii)	$y = 0, 3x + 5 = 0 \Longrightarrow x = -\frac{5}{3}$	M1: Sets $y = 0$ and attempts to find x. Accept as evidence $3x+5=0 \Rightarrow x=$ or $awrt-1.7$ A1: $x = -\frac{5}{3}$ or exact equivalent including 1.6 recurring (i.e. a clear dot over the 6)	M1A1
			(3)
(b)	Gradient $l_2 = -\frac{1}{\frac{3}{2}} = -\frac{2}{3}$	Uses $m_2 = -\frac{1}{m_1}$ to find the gradient of l_2 (may be implied by their line equation). Allow an attempt to find m_2 from $m_1 \times m_2 = -1$.	M1
	Point <i>B</i> has <i>y</i> coordinate of 4	This may be embedded within the equation of the line but must be seen in part (b).	B1
	e.g. $y - 4' = -\frac{2}{3}(x-1)$ or $\frac{y - 4'}{x-1} = -\frac{2}{3}$	A correct straight line method with a changed gradient and their point (1, '4'). There must have been attempt to find the y coordinate of <i>B</i> . If using $y = mx + c$, must reach as far as finding a value for <i>c</i> .	M1
	e.g. $y-4 = -\frac{2}{3}(x-1)$ or $\frac{y-4}{x-1} = -\frac{2}{3}$	A correct un-simplified equation	A1
	2x+3y-14=0	Accept $A(2x+3y-14)=0$ where A is an integer. Terms can be in any order but must have '= 0'.	A1
			(5)
Alt (b)	Gradient $l_2 = -\frac{1}{\frac{3}{2}} = -\frac{2}{3}$	Uses $m_2 = -\frac{1}{m_1}$ to find the gradient of l_2 as before	M1
	$\frac{3}{2}x + \frac{5}{2} = -\frac{2}{3}x + c$	A correct statement for $l_1 = l_2$	B1
	$x = 1 \Longrightarrow c = \frac{14}{3}$	Substitutes $x = 1$ to find a value for c	M1
	$y = -\frac{2}{3}x + \frac{14}{3}$	Correct equation	A1
	2x+3y-14=0	Accept $A(2x+3y-14) = 0$ where A is an integer.	A1

		www.dynamicpape	rs.com
(C)	$y = 0 \Longrightarrow 2x - 14 = 0 \Longrightarrow x = 7$	Attempts to find C using $y = 0$ in the equation obtained in part (b)	M1
	Attempts Area of triangle usi		
	$=\frac{1}{2}\times\left('7'+'\frac{5}{3}'\right)\times'4'$		
	or Attempts Area of triangle using 2 triangles		M1
	$\frac{1}{2} \times \left(1 + \left(\frac{5}{3}\right)\right) \times \left(y \text{ coord of } B\right)$	$+\frac{1}{2} \times (7'-1) \times (y \text{ coord of } B)$	
	If they make a second/different attem still allow t	pt to find the <i>y</i> coordinate of <i>B</i> then his mark.	
	52	Area = $\frac{52}{2}$ or exact equivalent e.g	
	$=\frac{32}{3}$	$17\frac{1}{3}$ or 17.3 recurring (i.e. a clear	A1
		dot over the 3)	
			(3) (11 marks)
	$y = 0 \Longrightarrow 2x - 14 = 0 \Longrightarrow x = 7$	Attempts to find <i>C</i> using $y = 0$ in the equation obtained in part (b)	M1
Way 2	Attempts area of triangle using $\frac{1}{2}AB \times BC = \frac{1}{2} \times \sqrt{\frac{208}{9}} \times \sqrt{52}$ A complete method for the area including correct attempts at finding AB		M1
6(c)	$=\frac{52}{3}$	Area $=\frac{52}{3}$ or exact equivalent e.g. 17 $\frac{1}{3}$ or 17.3 recurring (i.e. a clear dot over the 3)	A1
			(3)
	$y = 0 \Longrightarrow 2x - 14 = 0 \Longrightarrow x = 7$	Attempts to find <i>C</i> using $y = 0$ in the equation obtained in part (b)	M1
Way 3 6(c)	$\begin{bmatrix} \frac{1}{2} \begin{vmatrix} 1 & 7 & -\frac{5}{3} & 1 \\ 4 & 0 & 0 & 4 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -\frac{20}{3} - 28 \end{vmatrix}$	Uses shoelace method. Must see a correct method including ¹ / ₂ .	M1
	$=\frac{52}{3}$	Area $=\frac{52}{3}$ or exact equivalent e.g 17 $\frac{1}{3}$ or 17.3 recurring (i.e. a clear dot over the 3)	A1
			(3)

		www.dunamianana	re com
Way 4 6(c)	$y = 0 \Longrightarrow 2x - 14 = 0 \Longrightarrow x = 7$	Attempts to find C using $y = 0$ in the equation obtained in part (b)	M1
	$\int_{-\frac{5}{3}}^{1} \left(\frac{3x}{2} + \frac{5}{2}\right) dx + $	$\int_{1}^{7} \left(-\frac{2x}{3} + \frac{14}{3} \right) \mathrm{d}x$	
	$= \left[\frac{3x^2}{4} + \frac{5}{2}x\right]_{-\frac{5}{3}}^{1}$	$+\left[-\frac{2x^2}{6}+\frac{14}{3}x\right]_1^7$	M1
	$= \left(\frac{3}{4} + \frac{5}{2}\right) - \left(\frac{75}{36} - \frac{25}{6}\right) +$	$\left(-\frac{49}{3} + \frac{98}{3}\right) - \left(-\frac{1}{3} + \frac{14}{3}\right)$	
	A complete method using their value	les with correct integration on l_1 and	
	their l_2 : Finds the area under the giv	The end of	
	adds the area under their	l_2 between 1 and their 7.	
	$=\frac{52}{3}$	Area $=\frac{52}{3}$ or exact equivalent e.g.	A1
	5	dot over the 3)	
		· · · · · · · · · · · · · · · · · · ·	(3)

	www.dynamicpaperş.co		
Question Number	Sch	eme	Marks
7 (i)		Attempts to split the fraction. This can be awarded for $\frac{2}{x^2}$ or $\frac{4x^3}{x^2}$ or may be implied by the sight of one correct index e.g. px^{-2} or ax	
	$\frac{2+4x^3}{x^2} = \frac{2}{x^2} + 4x = 2x^{-2} + 4x$	providing one of these terms is obtained correctly. So for example $\frac{2+4x^3}{x^2} = 2+4x^3+x^{-2}$ would be M0 as the x^{-2} has been obtained incorrectly.	M1
	$\int 2x^{-2} + 4x \mathrm{d}x = 2 \times \frac{x^{-1}}{-1} + 4 \times \frac{x^2}{2} (+c)$	dM1: $x^n \rightarrow x^{n+1}$ on any term. Dependent on the first M. A1: At least one term correct, simplified or un-simplified. Allow powers and coefficients to be un- simplified e.g. $2 \times \frac{x^{-2+1}}{-1}$, $+4 \times \frac{x^{1+1}}{2}$	dM1A1
	$= -\frac{2}{x} + 2x^2 + c$	All correct and simplified including the + c. Accept equivalents such as $-2x^{-1} + 2x^2 + c$	A1
			(4)
	There are no marks in (ii) for use integr	e of the trapezium rule – must use ration	
(ii)	$\int \left(\frac{4}{\sqrt{x}} + k\right) dx$ $= \int \left(4x^{-0.5} + k\right) dx = 4\frac{x^{0.5}}{0.5} + kx(+c)$	M1: Integrates to obtain either $\alpha x^{0.5}$ or kx A1: Correct integration (simplified or un-simplified). Allow powers and coefficients to be un-simplified e.g. $4\frac{x^{-0.5+1}}{0.5}$. There is no need for $+c$	M1A1
	$\left[4\frac{x^{0.5}}{0.5} + kx\right]_{2}^{4} = 30 \Rightarrow$ Substitutes both $x = 4$ and $x = 2$ in subtracts either way rou Condone poor use or omission	$\left(8\sqrt{4} + 4k\right) - \left(8\sqrt{2} + 2k\right) = 30$ and and sets equal to 30 and brackets when subtracting.	M1
	$2k + 16 - 8\sqrt{2} = 30 \implies k = 7 + 4\sqrt{2}$	ddM1: Attempts to solve for k from a linear equation in k. Dependent upon both M's and need to have seen $\int k dx \rightarrow kx$. A1: $7+4\sqrt{2}$ or exact equivalent e.g. $7+2^{2.5}$, $7+4\times2^{0.5}$	ddM1A1
			(5) (0 marka)
			(9 marks)

Question Number	Sche	me	Marks
8 (a)	$f(3) = 2(3)^3 - 5(3)^2 - 23(3) - 10$		
	or	Attempts to coloriate $f(+2)$ or	
	$2x^2 + \dots$	Attempts to calculate $f(\pm 3)$ or divides by $(x = 3)$. For long division	
	$(x-3)2x^{3}-5x^{2}-23x-10$	need to see minimum as shown with	M1
	, 	a constant remainder.	
	$\frac{1}{(\text{Remainder} =)} -70$	-70	A1
	(rteintunder =) 70	10	(2)
	Mark (b) and	(c) together	
(b)	$f(-2) = 2(-2)^3 - 5(-2)^2 - 23(-2) - 10$		
	Or	Attempts $f(+2)$ or divides by	
	$2x^2$ +	(x+2). For long division need to see	2.64
	$(x+2)2x^3-5x^2-23x-10$	minimum as shown with a constant	MI
		remainder.	
		Obtains a remainder zero and makes	
		a conclusion (not just a tick or e.g.	
	Pomaindar = 0 hance x + 2 is a factor	QED). Do not need to refer to the	Δ1*
	Remainder $= 0$, hence $x + 2$ is a factor	zero remainder must have been	AI
		obtained. (May be seen in a	
		preamble)	
	Note that just $f(-2) = 0$ therefore $(x + 2)$	is a factor scores M0A0 as there must	
			(2)
(c)		Divides $f(x)$ by $(x+2)$ or compares	(=)
	$\frac{2x^3 - 5x^2 - 23x - 10}{2x^3 - 5x^2 - 23x - 10} = ax^2 + bx + c$	coefficients or uses inspection to	M1
	(<i>x</i> +2)	obtain a quadratic expression with 2^{2}	
	2^{2} 0 5	$2x^2$ as the first term.	A 1
	2x - 9x - 5		AI
	f(x) = (x + 2)(x + 2)	2 + 1)(x - 5)	
	$\Gamma(x) = (x+2)($	(2x+1)(x-3)	
	d M1: Attempt to factorise their 3TQ (2)	x^2). The usual rules apply here so if	
	$2x^2 - 9x - 5$ is factorised as $(x-5)(x+\frac{1}{2})$), this scores M0 unless the factor of 2	dMIAI
	appears	later.	
	A1: $(x+2)(2x+1)(x-5)$ oe e.g. $2(x+2)$	$2\left(x+\frac{1}{2}\right)(x-5)$. All factors together on	
	one line. Must appear here and not in (d)). Ignore subsequent attempts to solve.	
	SC: This is a hence question but we v	vill allow a special case of 1100 for	
	candidates in this part who use their gi -0.5 and 5 and write down th	raphical calculators to get roots of -2,	
		10 <u>1011001</u> 100011900 101111.	

Г	www.dvnamicpapers.c	<u>om</u>
Question Number	Scheme	Marks
	But note that if all that is seen is $(x+2)(x+\frac{1}{2})(x-5)$ this scores 1000	
		(4)

(d)	$3^t = 5' \Longrightarrow t \log 3 = \log 5'$	Solves $3^t = k$ where $k > 0$ and follows from their (c) to obtain $t \log 3 = \log k$. Accept sight of $t = \log_3 k$ where $k > 0$ and follows from their (c)	M1
	$\Rightarrow t = awrt 1.465$ only	t = awrt 1.465 and no other solutions	A1
			(2)
			(10 marks)

Question Number	Scheme		Marks
	$f(x) = 8x^{-1} + \frac{1}{2}x - 5$	M1: $-8x^{-2}$ or $\frac{1}{2}$	
9(a)	$\Rightarrow f'(x) = -8x^{-2} + \frac{1}{2}$	A1: Fully correct $f'(x) = -8x^{-2} + \frac{1}{2}$	M1A1
	2	(may be un-simplified)	
		M1: Sets their $f'(x) = 0$ i.e. a	
	. 1	"changed" function (may be implied	
	Sets $-8x^{-2} + \frac{1}{2} = 0 \Longrightarrow x = 4$	by their work) and proceeds to find	M1A1
	-	<i>x</i> .	
		A1: $x = 4$ (Allow $x = \pm 4$)	
	(A = 1)	Correct coordinates	A 1
	(4,-1)	(allow $x = 4, y = -1$).	AI
		Ignore men (-4,)	(5)
		x=2 and $x=8$ only. Do not	
(b)(i)	(x=)2, 8	accept as coordinates here.	B1
		(4, 1) or follow through on their	
	(4, 1)	solution in (a). Accept $(x, y+2)$	D16
(D)(11)	(4, 1)	from their (x, y) . With no other	Blft
		points.	
		Both answers are needed and accept	
	1	(2, 0) $(1, 0)$ 1	
(b)(iii)	$(x=)2,\frac{1}{2}$	$(2,0), (\frac{1}{2}, 0)$ here. Ignore any	B1
	× / 2	reference to the image of the turning	
		point.	
			(3)
			(8 marks)

Question Number	Scheme		Marks
	Mark (a) and	(b) together	
10(a)	$(1+ax)^{20} = 1^{20} + {}^{20}C_1 1^{11}$	$^{9}(ax)^{1} + {}^{20}C_{2}1^{18}(ax)^{2}.$	
	Note that the notation $\begin{pmatrix} 20\\1 \end{pmatrix}$) may be seen for ${}^{20}C_1$ etc.	
	$^{20}C_1 1^{19} (ax)^1 = 4x \Longrightarrow 20a = 4 \Longrightarrow a = 0.2$	M1: Uses either ${}^{20}C_1(1^{19})(ax)^1 = 4x^1$ or $20a = 4$ to obtain a value for <i>a</i> . A1: $a = 0.2$ or equivalent	M1A1
		· · · · ·	(2)
(b)	$^{20}C_{2}1^{18}(ax)^{2} = px^{2}$ $\Rightarrow \frac{20 \times 19}{2} \times ('0.2')^{2} = p$ $\Rightarrow p = \dots$	Uses ${}^{20}C_2(1^{18})(ax)^2 = px^2$ and their value of <i>a</i> to find a value for <i>p</i> . Condone the use of <i>a</i> rather than a^2 in finding <i>p</i> . Maybe implied by an attempt to find a value for $190a^2$ or $190a$. Note: ${}^{20}C_{18}$ can be used for ${}^{20}C_2$	M1
	<i>p</i> = 7.6	Accept equivalents such as $\frac{38}{5}, \frac{190}{25}$	A1
			(2)
(c)	Term is ${}^{20}C_4 1^{16} (ax)^4 \Rightarrow q =$	Identifies the correct term and uses their value of <i>a</i> to find a value for <i>q</i> . Condone the use of <i>a</i> rather than a^4 . Must be an attempt to calculate ${}^{20}C_4a^4$ or ${}^{20}C_4a$ or ${}^{20}C_{16}a^4$ or ${}^{20}C_{16}a$	M1
	$q = {}^{20}C_4 \times 0.2^4 = \frac{969}{125} = (7.752)$	$q = \frac{969}{125} \text{ or exact equivalent e.g.}$ 7.752, $7\frac{94}{125}$. $q = \frac{969}{125}x^4 \text{ scores A0 but}$ $qx^4 = \frac{969}{125}x^4 \text{ scores A1.}$	A1
			(2)
			(6 marks)

	www.dynamicpapers.c		
Question Number	Scheme	Marks	
11(i)	$3\cos^{2} x + 1 = 4(1 - \cos^{2} x)$ or $3(1 - \sin^{2} x) + 1 = 4\sin^{2} x$ or $3 + \tan^{2} x + 1 = 4\tan^{2} x$ or $3\frac{\cos 2x + 1}{2} + 1 = 4\frac{1 - \cos 2x}{2}$ Uses $\sin^{2} x = 1 - \cos^{2} x$ to produce an equation in $\cos^{2} x$ or uses $\cos^{2} x = 1 - \sin^{2} x$ to produce an equation in $\sin^{2} x$ or uses $\cos^{2} x + \sin^{2} x = 1$ and divides by $\cos^{2} x$ to produce an equation in $\tan^{2} x$ or uses $\sin^{2} x$ and $\cos^{2} x$ in terms of $\cos 2x$. Condone missing brackets.	M1	
	$\Rightarrow \cos^2 x = \frac{3}{7} \text{ or } \sin^2 x = \frac{4}{7} \text{ or } \\ \tan^2 x = \frac{4}{3} \text{ or } \cos 2x = -\frac{1}{7} \end{aligned}$ Correct value for $\cos^2 x \text{ or } \sin^2 x \text{ or } \\ \tan^2 x \text{ or } \cos 2x. \text{ This may be implied by } \\ \cos x = \sqrt{\frac{3}{7}} \text{ or } \sin x = \sqrt{\frac{4}{7}} \text{ or } \tan x = \sqrt{\frac{4}{3}} \end{aligned}$	A1	
	$\Rightarrow \cos x = \pm \sqrt{\frac{3}{7}} \Rightarrow x = \cos^{-1}\left(\sqrt{\frac{3}{7}}\right)$ A correct order of operations to obtain a correct expression for x. E.g. $\cos^2 x = p \Rightarrow \cos x = \sqrt{p} \Rightarrow x = \cos^{-1} \sqrt{p} \text{ or}$ $\sin^2 x = p \Rightarrow \sin x = \sqrt{p} \Rightarrow x = \sin^{-1} \sqrt{p} \text{ or}$ $\tan^2 x = p \Rightarrow \tan x = \sqrt{p} \Rightarrow x = \tan^{-1} \sqrt{p} \text{ or}$ $\cos 2x = p \Rightarrow 2x = \cos^{-1} p \Rightarrow x = \frac{1}{2} \cos^{-1} p$ This may be implied by one correct answer for their values.	M1	
	$\Rightarrow x = awrt 0.86, 2.28, 4.00, 5.43$ A1: Any two of awrt 0.86, 2.28, 4.00, 5.43 A1: All four of awrt 0.86, 2.28, 4.00, 5.43 with no additional solutions in the range and ignore solutions outside the range.	A2,1,0	
	Allow A1 for anyt two of these but deduct the final A mark		
	For answers given as awrt 0.27π 0.73π 1.27π 1.73π allow A1 only for any 2		
	of these but deduct the final A mark		
		(5)	

		<u>www.dvnamienanore</u>	com
(ii)	$5\sin(\theta+10^\circ) = \cos(\theta+10^\circ)$	M1: Reaches $tan() = \alpha$ where α is a	5.0011
	$\Rightarrow \tan(0 + 10^{\circ}) = 0.2$	constant including zero.	M1A1
	$\rightarrow \tan(\theta + 10) = 0.2$	A1: $tan() = 0.2$	
		For the correct order of operations to	
	$\rightarrow \theta - \tan^{-1}(0,2) - 10^{\circ}$	produce one value for θ . Accord $\theta = \tan^{-1}(\alpha)$ 10, $\alpha \neq 0$ or one	dM1
	$\rightarrow b = tair (0.2) - 10$	Accept $\theta = \tan (\alpha) - 10, \ \alpha \neq 0$ of one correct answer as evidence	alvii
		Dependent on the first M.	
		A1: One of awrt $\theta = 1.3, 181.3$	
	$\Rightarrow \theta = awrt \mid 3^\circ \mid 8 \mid 3^\circ$	A1: Both awrt $\theta = 1.3, 181.3$ and no	A1A1
		other solutions in range and ignore	
		solutions outside the range.	
	Note that final answers in radians in the earlier marks are av	(11) cannot score the final 2 A marks but ailable (maximum 11100)	
			(5)
			(10 marks)
	Alternative 1 for	(ii) by squaring:	
	$5\sin\left(\ldots\right) = \cos\left(\ldots\right)$		
	$\Rightarrow 25 \sin^2() = \cos^2()$	Squares both sides, replaces	
	$\Rightarrow 25(1 - \cos^2(1)) - \cos^2(1)$	$\sin^{2}()$ by $1-\cos^{2}()$ or	
	$\rightarrow 25(1-\cos(\ldots))-\cos(\ldots)$	replaces $\cos^2()$ by	M1
	or	$1-\sin^2()$ and reaches	
	$25\sin^2() = 1 - \sin^2()$	$\sin^2()$ = or $\cos^2()$ =	
	Leading to	$\sin() = \text{ or } \cos() =$	
	$\sin^2() = \text{ or } \cos^2() =$		
	1	Correct value for $\sin^2()$ or	
	$\sin^2() = \frac{1}{26}$	$\cos^2()$. This may be implied	
	or	by $\sin(\cdot) = \frac{1}{2}$ or	A1
	$\cos^2() = \frac{25}{25}$	$\sqrt{26}$	
	$\cos() - \frac{1}{26}$	$\cos() = \sqrt{\frac{25}{25}}$	
		V26	
	$\theta = \sin^{-1} \frac{1}{\sqrt{2\pi}} - 10^{\circ}$	For the correct order of	
	√26 or	operations to produce one value for θ as shown or accent one	dM1
		correct answer as evidence	u IVI I
	$\theta = \cos^{-1} \frac{3}{\sqrt{26}} - 10^{\circ}$	Dependent on the first M.	
		A1: One of awrt $\theta = 1.3, 181.3$	
		A1: Both awrt $\theta = 1.3, 181.3$ and	
	$\Rightarrow \theta = 1.3^\circ, 181.3^\circ$	no other solutions in range and	A1A1
		ignore solutions outside the	
	Note that final answers in radians in	(ii) cannot score the final 2 A marks	
	but the earlier marks are available (maximum 11100)		

	Alternative 2 for (ii) Using	the addition formulae	
Alt (ii)	$5\sin\theta\cos 10 + 5\cos\theta\sin 10 = \cos\theta\cos 10 - \sin\theta\sin 10$ Uses the correct addition formulae on both sides and rearranges to $\tan() =$		M1
	$\tan \theta = \frac{\cos 10 - 5\sin 10}{5\cos 10 + \sin 10} = (0.0229)$ Correct value for $\tan \theta$		A1
	$\tan\theta = 0.0229 \Longrightarrow \theta = \dots$	Uses arctan to produce one value for θ . Dependent on the first M.	d M1
	$\Rightarrow \theta = 1.3^{\circ}, 181.3^{\circ}$	A1: One of awrt $\theta = 1.3, 181.3$ A1: Both awrt $\theta = 1.3, 181.3$ and no other solutions in range and ignore solutions outside the range.	A1A1
	Note that final answers in radians in (ii) cannot score the final 2 A marks but the earlier marks are available (maximum 11100)		
			(5)

		www.dynamicpaper	s.com
Number	Sche	me	Marks
12(a)	$y = \frac{3}{4}x^2 - 4\sqrt{x} + 7 \Longrightarrow \frac{dy}{dx} = \frac{3}{2}x - 2x^{-0.5}$	M1: Differentiates to obtain at least one correct power for one of the terms in x. (may be un-simplified) e.g. $x^2 \rightarrow x^{2-1}$ or $\sqrt{x} \rightarrow x^{\frac{1}{2}-1}$ A1: Correct derivative. Allow un- simplified e.g. $2 \times \frac{3}{4} x^{2-1}$ or $-4 \times \frac{1}{2} x^{\frac{1}{2}-1}$	M1A1
	At $x = 4 \frac{dy}{dx} = \frac{3}{2}(4) - 2(4)^{-0.5} =$	Substitutes $x = 4$ into a changed function in an attempt to find the gradient.	M1
	y-11 = "5"(x-4) or $y = mx + c \Longrightarrow 11 = "5" \times 4 + c \Longrightarrow c =$	Correct straight line method using (4, 11) correctly placed and their dy/dx at $x = 4$ for the tangent not the normal . If using $y = mx + c$, must reach as far as finding a value for <i>c</i> . Dependent on the previous M .	d M1
	y = 5x - 9	Correct printed equation with no errors seen. Beware of the "5" appearing from wrong working.	A1*
	Important Note:Important Note:Following a correct derivative, if candidate states $x = 4$ so $dy/dx = 5$, thisis fine if they then complete correctly – allow full marks.However, following a correct derivative, if the candidate just states $dy/dx = 5$ and then proceeds to obtain the correct straight line equation,the final mark can be withheld. Some evidence is needed that the candidate is considering the gradient at $x = 4$.		
			(5)

	Finds area under curve between		
	(see diagr	am at end)	
(b) Way 1	$\int \frac{3}{4}x^2 - 4\sqrt{x} + 7 \mathrm{d}x = \frac{1}{4}x^3 - \frac{8}{3}x^{1.5} + 7$	M1: $x^n \rightarrow x^{n+1}$ on any term. May be un-simplified e.g. $x^2 \rightarrow x^{2+1}, x^{0.5} \rightarrow x^{0.5+1},$ $7 \rightarrow 7x^1$ A1: Correct integration. May be un-simplified e.g. terms such as $\frac{1}{3} \times \frac{3}{4} x^{2+1},$ $-\frac{2}{3} \times 4x^{0.5+1}, 7x^1$ and $+c$ is not required.	M1A1
	Tangent meets x axis at $x = 1.8$	This may be embedded within a triangle area below or may be seen on a diagram.	B1
	Area of triangle $=\frac{1}{2} \times$ Correct method for the area of a tr This may be implied by the evaluatio	$(4 - '1.8') \times 11 = (12.1)$ iangle - look for $\frac{1}{2} \times (4 - '1.8') \times 11$ on of $\int_{'1.8'}^{4} 5x - 9 dx = \left[5\frac{x^2}{2} - 9x\right]_{'1.8'}^{4}$	M1
	Correct method for area = Area A + Area B + Area C - Area C $\left(\frac{1}{4}4^{3} - \frac{8}{3} \times 4^{1.5} + 7 \times 4\right) - \left(\frac{1}{4}1^{3} - \frac{8}{3} \times 1^{1.5} + 7 \times 1\right) - 12.1'$ Correct combination of areas. Dependent on both previous method marks.		dd M1
	= awrt 5.98	Area of $R = a wrt 5.98$ or allow the exact answer of $\frac{359}{60}$ or equivalent.	A1
			(6)
			(11 marks)

For part (b), in all cases, look to apply the appropriate scheme that gives the candidate the best mark

	Finds area under curve between 1 and "1.8"	' and adds "line – curve" or	
	"curve – line" between "1	.8" and 4	
(b) Way 2	$\int \frac{3}{4}x^2 - 4\sqrt{x} + 7 \mathrm{d}x = \frac{1}{4}x^3 - \frac{8}{3}x^{1.5} + 7x(+c)$	M1: $x^n \rightarrow x^{n+1}$ on any term. May be un-simplified e.g. $x^2 \rightarrow x^{2+1}, x^{0.5} \rightarrow x^{0.5+1},$ $7 \rightarrow 7x^1$ A1: Correct integration. May be un-simplified e.g. terms such as $\frac{1}{3} \times \frac{3}{4} x^{2+1},$ $-\frac{2}{3} \times 4x^{0.5+1}, 7x^1$ and $+c$ is	M1A1
		This may be seen on a	
	Tangent meets x axis at $x = 1.8$	diagram.	B1
	Area between "1.8" ar	nd 4 =	
	$\pm \int_{1.8}^{4} \left(\frac{3}{4}x^2 - 4\sqrt{x} + 7\right) - (5x - 9) dx = \pm \left[\frac{1}{4}\right]$ $= \frac{56}{4} - 15.7182(= 2.9)$	$\left[x^{3} - \frac{8}{3}x^{1.5} - \frac{5x^{2}}{2} + 16x\right]_{1.8}^{4}$ (485)	M1
	Attempts to integrate "curve – line" or "line - "1.8" and 4 and subtr	- curve", substitute the limits racts.	
	Correct method for area = Are	ea A + Area B	
	$\left(\left(\frac{1}{4}"1.8"^{3}-\frac{8}{3}"1.8"^{1.5}+7\times"1.8"\right)-\left(\frac{1}{4}1^{3}-\frac{8}{3}\right)\right)$	$(1^{1.5} + 7 \times 1) + '2.9485')$	dd M1
	Correct combination of areas. Dependent on b	ooth previous method marks.	
	= awrt 5.98	Area of R = awrt 5.98 or allow the exact answer of $\frac{359}{60}$ or equivalent.	A1
		•	(6)

	Uses "line – curve" or "curve – line" between 1 and 4 and subtracts triangle			
	below	x axis		
(b) Way 3	$\pm \left(\frac{3}{4}x^2 - 4\sqrt{x} + 7 - 5x + 9\right)$	$= \pm \left(\frac{3}{4}x^2 - 4\sqrt{x} - 5x + 16\right)$		
	$\pm \int \frac{3}{4}x^2 - 4\sqrt{x} - 5x + 16 dx = \pm \left(\frac{1}{4}x^3 - \frac{8}{3}x^{1.5} - \frac{5x^2}{2}\right) + kx(+c)$		MIA1	
	M1: $x^n \rightarrow x^{n+1}$ on any term. May be un-simplified e.g. $x^2 \rightarrow x^{2+1}$,		1011711	
	$x^{0.5} \to x^{0.5+1}, x \to x^{1+1}, 16 \to 16x^1$. If ter	rms are not collected when subtracting		
	then the same condition applies.			
	A1: Correct integration as shown. Ma	y be un-simplified for coefficients and		
	powers and $+c$ is not required.			
		This may be embedded within a		
	Tangent meets x axis at $x = 1.8$	triangle area below or may be seen	B1	
		on a diagram.		
	Area of triangle = $\frac{1}{2} \times ('1.8' - 1) \times 5 \times 1 - 9 = (1.6)$		M1	
	Correct method for the area of a trian	ngle - look for $\frac{1}{2} \times (1.8 - 1) \times 5 \times 1 - 9 $	1011	
	Correct method for area = Area	A + Area B + Area D - Area D		
	$\left(\left(\frac{1}{4}4^3 - \frac{8}{3}4^{1.5} - \frac{5 \times 4^2}{2} + 16 \times 4\right) - \left(\frac{1}{4}1^3 - \frac{8}{3}1^{1.5} - \frac{5 \times 1^2}{2} + 16 \times 1\right) - 1.6'\right)$		dd M1	
	Correct combination of areas. Depend	lent on both previous method marks.		
	Area of $R = awrt 5.98$ or allow the			
	= awrt 5.98	exact answer of $\frac{359}{60}$ or equivalent.	Al	
				(6)

	www.dynamicpapers.com		
Question Number	Scheme	Marks	
13(a)(i)	(-c, 0) (c, 0)		
	Or Shape anywhere but not The maximum must be smooth and not form a point and the branches must not clearly turn back in on themselves. Or A continuous graph passing through or touching at the points (- <i>c</i> , 0), (<i>c</i> , 0) and (0, <i>c</i> ²). They can appear on their sketch or within the body of the script but there must be a sketch. Allow these marked as - <i>c</i> , <i>c</i> and <i>c</i> ² in the correct places. Allow (0, - <i>c</i>), (0, <i>c</i>) and (<i>c</i> ² , 0) as long as they are marked in the correct places. If there is any ambiguity, the sketch takes precedence.	B1	
	A fully correct diagram with the curve in the correct position and the intercepts and shape as described above. The maximum must be on the <i>y</i> -axis and the branches must extend below the <i>x</i> -axis.	B1	
(a)(ii)	There must be a sketch to score any marks in (a)		
	Shape. A positive cubic with only one maximum and one minimum. The curve must be smooth at the maximum and at the minimum (not pointed).	B1	
	A smooth curve that touches or meets the <i>x</i> -axis at the origin and $(3c, 0)$ in the correct place and no other intersections. The origin does not need to be marked but the $(3c, 0)$ does. Allow $3c$ or $(0, 3c)$ to be marked in the correct place. May appear on their sketch or within the body of the script. If there is any ambiguity, the sketch takes precedence.	B1	
	Maximum at the origin (allow the	B1	
	There must be a sketch to score any marks in (a)	(5)	
(b)	Intersect when $r^2(x - 3a) = a^2 - x^2 \Rightarrow x^3 - 2ax^2 = a^2 - x^2$	(5)	
	Sets equations equal to each other and attempts to multiply out the bracket or vice versa		
	Collects to one side (may be implied), factorises the x^2 terms and obtains printed answer with no errors. There must be an intermediate line of working. Allow $x^3 + x^2(1-3c) - c^2 = 0$ or $0 = x^3 + (1-3c)x^2 - c^2 = 0^*$	A1*	
		(2)	

		<u>www.dvnamicnanore</u>	com
(c)	$8 + 4(1 - 3c) - c^2 = 0$	Substitutes $x = 2$ to give a correct un- simplified form of the equation.	M1
	$c^2 + 12c - 12 = 0$	Correct 3 term quadratic. Allow any equivalent form with the terms collected (may be implied)	A1
	$(c+6)^{2} - 36 - 12 = 0 \Longrightarrow c = \dots$ or $c = \frac{-12 \pm \sqrt{12^{2} - 4 \times 1 \times (-12)}}{2}$	Solves their 3TQ by using the formula or completing the square only . This may be implied by a correct exact answer for their 3TQ. (May need to check)	M1
	$4\sqrt{3}-6$	$c = 4\sqrt{3} - 6$ or $c = -6 + 4\sqrt{3}$ only	A1
			(4)
			(11 marks)

· ·	www.dvnamicpapers.com		
Question Number	Scheme		Marks
14 (a)	Allow the use of <i>S</i> or <i>S_n</i> throughout without penalty. $S = a + ar + ar^2 + \dots ar^{n-1}$ and $rS = ar + ar^2 + ar^3 + \dots ar^n$ There must be a minimum of '3' terms and must include the first and the <i>n</i> th term. Condone for this mark only $S = a + ar + ar^2 + \dots ar^n$ and $rS = ar + ar^2 + ar^3 + \dots ar^{n+1}$ and allow commas instead of +'s but see note below.		M1
	$S-rS=a-ar^n$	Subtracts either way around. As a special case allow $S - rS = a + ar^n$. For this mark, their <i>S</i> and their <i>rS</i> must be different but it must be <i>S</i> and <i>rS</i> they are considering with possible missing terms or slips.	M1
	$\Rightarrow S(1-r) = a(1-r^n) \Rightarrow S = \frac{a(1-r^n)}{(1-r)}$	dM1: Dependent upon both previous M's. It is for taking out a common factor of <i>S</i> and achieving S = A1*: Fully correct proof with no errors or omissions. The use of commas instead of +'s is an error. $S = \frac{a(r^n - 1)}{(r - 1)}$ without reaching the printed answer is A0	dM1A1*
			(4)
(a) Way 2	$S = \frac{(a + ar + ar^{2} + \dots ar^{n-1})(1 - r)}{1 - r}$	Gives a minimum of '3' terms and must include the first and the <i>n</i> th and multiplies top and bottom by 1 - r	M1
	$S = \frac{a + ar + ar^{2} + \dots ar^{n-1} - ar - ar^{2} - ar^{2}}{1 - r}$	$\frac{ar^{n}}{ar}$ Expands the top with a minimum of '3' terms in each and must include the first and the <i>n</i> th term	M1
	$S = \frac{a(1-r^n)}{(1-r)}$	dM1: Dependent upon both previous M's. It is for taking out a common factor of <i>a</i> on top and achieving $S =$ A1*: Fully correct proof with no errors or omissions. The use of commas instead of +'s is an error. $S = \frac{a(r^n - 1)}{(r - 1)}$ without reaching the printed answer is A0	dM1A1

		www.dvnamicnaner	e com
(b)	$U = 180 \times 0.93^n$ with $n = 4 \text{ or } 5$	Attempts $U = 180 \times 0.93^{\circ}$ with $n = 4 \text{ or } 5$. Accept	M
		$U = 167.4 \times 0.93^{n}$ with $n = 3$ or 4 Allow 93% for 0.93	IVI I
	$U_{5} = 180 \times (0.93)^{5} = 125.2$ (litres)	Cso. Awrt 125.2	A1*
	Allow 93% or 1 – 7% for 0.93		
			(2)
(c)	Attempts $S_n = \frac{a(1-r^n)}{(1-r)}$ with any combination of: n = 20/21, $a = 180/167.4$ and $r = 0.93$		M1
	n = 20/21 $u = 180/107.4$ and $r = 0.95$		
	Allow 95%		
	$S = \frac{167.4(1 - 0.93^{20})}{(1 - 0.93)} \text{ or } S = 180 \times \frac{0.93(1 - 0.93^{20})}{(1 - 0.93)}$		
	or		
	$S = \frac{180(1 - 0.93^{21})}{(1 - 0.93)} - 180$		A1
	A correct numerical expression for the sum (may be implied by awrt 1831) Allow 93% or 1 – 7% for 0.93		
	1831 (litres)	1831 only (Ignore units). Do not isw here, so 1831 followed by $1831 \times 20 =$ scores A0.	A1
			(3)
			(9 marks)

Listing:

(b)	Sight of awrt 180, 167, 156, 145, 135, 125	Starts with 180 and multiplies by 0.93 either 4 or 5 times showing each result at least to the nearest litre and chooses the 5 th or 6 th term	M1
	$U_{5} = 125.2$ (litres)	Must see all values accurate to 1dp: e.g. awrt 180, 167.4, 155.7, 144.8, (134.6 or 134.7), 125.2	A1*
			(2)
(c)	Total = $180 \times 0.93 + 180 \times 0.93^2 + \dots + 180 \times 0.93^{19} + 180 \times 0.93^{20} = \dots$ Finds an expression for the sum of 20 or 21 terms		M1
	All sums accurate to awrt 1dp 167.4+155.7+144.8+134.6+125.2+42.2 A correct numerical expression for the sum (may be implied by awrt 1831)		A1
	1831 (litres)	1831 only (Ignore units). Do not isw here, so 1831 followed by $1831 \times 20 = \dots$ scores A0.	A1
			(3)

	www.dynamicpapers.com		
Question Number	Scheme	Marks	
15	Area of triangle = $\frac{1}{2} \times (2r)^2 \sin\left(\frac{\pi}{3} \text{ or } 60\right)$ or $\frac{1}{2} \times (r)^2 \sin\left(\frac{\pi}{3} \text{ or } 60\right)$	M1	
	Correct method for the area of either triangle. Ignore any reference to which triangle they are finding the area of.	1011	
	Area of sector = $\frac{1}{2} \times r^2 \times \frac{\pi}{3}$ Use of the sector formula $\frac{1}{2}r^2\theta$ with $\theta = \frac{\pi}{3}$ which may be embedded within a segment	M1	
	Area R = Sector + 2 Segments = $\frac{1}{2}r^2 \times \frac{\pi}{3} + 2 \times \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \times \frac{\sqrt{3}}{2}\right)$		
	Area R = Triangle + 3 Segments = $\frac{1}{2}r^2 \times \frac{\sqrt{3}}{2} + 3 \times \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \times \frac{\sqrt{3}}{2}\right)$		
	Area $R = 3$ Sectors -2 Triangles $= 3 \times \frac{1}{2}r^2 \times \frac{\pi}{3} - 2 \times \left(\frac{1}{2}r^2 \times \frac{\sqrt{3}}{2}\right)$	M1A1	
	Area $R = Big$ triangle – 3 White bits	IVITAT	
	$= \frac{1}{2} \times (2r)^2 \frac{\sqrt{3}}{2} - 3 \times \left(\frac{1}{2}r^2 \times \frac{\sqrt{3}}{2} - \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \times \frac{\sqrt{3}}{2} \right) \right)$		
	M1: A fully correct method (may be implied by a final answer of awrt $0.705r^2$)		
	A1: Correct exact expression - for this to be scored $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ must be seen		
	$=\frac{1}{2}\pi r^{2} - \frac{\sqrt{3}}{2}r^{2} = r^{2}\left(\frac{1}{2}\pi - \frac{\sqrt{3}}{2}\right)$ Cso (Allow $\frac{r^{2}}{2}(\pi - \sqrt{3})$ or any exact equivalent with r^{2} taken out as a common factor)	A1	
		(5 marks)	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom