CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	www.dynan	nicpapers	.com
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9709	71

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syll	abus	Paper
	Cambridge International A Level – October/November 2015	97	'09	71

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

				W	ww.dynam	nicpapers	.com
	Page 4	Mark Scheme				Syllabus	Paper
		Cambridge International A Level – Oc	tober	/Noven	1ber 2015	9709	71
1		$\lambda = (1.2 + 2.3) \div 2$ = 1.75 (1.75 ² - 1.75 ³)	M1 A1		Attempt com Correct mean		allow 1.2 + 2.3
		$e^{-1.75}\left(\frac{1.75^2}{2}+\frac{1.75^3}{3!}\right)$	M1		Allow incorr Allow end er	rect mean. rrors (1 and/or	r 4)
		= 0.421 (3 sf)	A1	[4]			
			Tota	l: 4			
2	(i)	$\frac{6}{\sqrt{120}}$ oe seen	B1		Or 6 ² /120 oe	seen	
		$\frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \qquad (=1.826)$	M1		± Allow witho	ut √120. No s	d/var mix
		$P(z > `1.826') = 1 - \Phi(`1.826')$ = 0.034 (2 sf)	M1 A1	[4]	Correct tail c working 0.0339	h their	
	(ii)	No n is large (\geq 30)	B1		1 st B1 for eit	her comment	
		Sample mean is (appr) normally distrib or The CLT applies oe	B1	[2]	2 nd B1 for'No (No mark for	o'with 2 nd con r 'No' alone)	nment
			Tota	l: 6			
3	(i)	$\frac{3420}{60}(=57)$	B1				
		$\frac{60}{59} \left(\frac{195200}{60} - 57'^2 \right) \qquad (= 4.40678)$ = 4.41 (3 sf)	M1		Oe		
			A1	[3]	As final answ	ver	
	(ii)	$57' \pm z \sqrt{\frac{4.40678'}{60}}$	M1	_			
		<i>z</i> = 2.326	B1		2.326 - 2.329 seen)	9 (accept 2.33	if no better
		[56.4 to 57.6] (3 sf)	A1	[3]	· · ·	iased variance	e in (ii) can
			Tota	l: 6			

		www.dynamicpapers.com 5 Mark Scheme Syllabus Paper							
	Page 5					Paper			
		Cambridge International A Level – Oc	9709	71					
			[1					
4	(i)	$k \int_{1}^{2} (3-x)dx = 1$	M1	Attempt $\int f(x) = 1$, ignore limits or $\frac{k}{2}(h_1 + h_2) = 1$					
		$k\left[3x - \frac{x^2}{2}\right]_1^2 = 1$	A1	Correct integration & limits or $\frac{k}{2}(2+1) = 1$					
		(k(6-2-(3-0.5)) = 1) $k \times 1.5 = 1 \text{ or } k \times \frac{3}{2} = 1 \text{ or } k = \frac{1}{1.5} \text{ oe}$ $k = \frac{2}{3} \text{ AG}$	A1 [3]	No errors seen					
		5							
	(ii)	$\frac{2}{3} \int_{-\infty}^{\infty} (3-x) dx = 0.5 \text{ oe } \int \text{from m to } 2$	M1*	Attempt Int $f(x) = 0.5$, ignore limit					
		1		Or use of are	a of trapeziu	m			
		$\left(\frac{2}{3}\left[3x - \frac{x^2}{2}\right]_1^m = 0.5\right)$			1				
		$\frac{2}{3} \left[3m - \frac{m^2}{2} - 2.5 \right] = 0.5$	dep M1*	Sub of correct limits into their integ Or trapezium using 1 and m/m and 2 Any correct 3-term $QE = 0$ or $(m-3)$ =2.5					
		$m^2 - 6m + 6.5 = 0$ oe	A1						
		$\left(m = \frac{6 \pm \sqrt{36 - 4 \times 6.5}}{2} = 1.42 \text{ or } 4.58\right)$ m = 1.42 (3 sf)	A1 [4]	or $\frac{6-\sqrt{10}}{2}$ or	e; single corre	ect ans			
			Total: 7						

г			_		W	ww.dynam				
	Page 6		Mark Scheme		/	- h 004 F	Sylla		Paper	
Į		Cambridge Internation	onal A Level – Od	ctoper	Noven	nber 2015	970	9	71	
5	(i)	Po(1.6) stated or implied		M1						
		$P(X > 3) = 1 - e^{-1.6} \left(1 + 1.6 \right)$	$+\frac{1.6^2}{2}+\frac{1.6^3}{3!}\right)$	M1		Allow M1 for and allow one			, incorrec	et λ
		= 0.0788 (3 sf)		A1	[3]	SR Use of Bin scores B1 only for 0				.0788
	(ii)	$\lambda = \frac{n}{2500}$ $e^{-\frac{n}{2500}} < 0.05$ Allow = Allow in		B1 M1		$e^{-\mu} < 0.05$	M1	or $\frac{2499}{2500}$ $\left(\frac{249}{2500}\right)$	$\left(\frac{\overline{99}}{\overline{90}}\right)^n < 0.4$	
		$-\frac{n}{2500} < \ln 0.05$ Attempt n > 7489.3 (1 dp) Smallest $n = 7490$	ln bs	M1 A1	[4]	$-\mu < \ln 0.05$ ($\mu > 2.9957$) $n = \mu \times 2500$ Smallest $n =$	B1	4	$\frac{2499}{2500} < \ln n$	M1
				Tota	l: 7					
6	(i)	$E(T) = 9 \times 78 + 7 \times 66$	(= 1164)	B1		$Or 9 \times 78 + 7$	7 × 66 –	1200		
		$Var(T) = 9 \times 7^{2} + 7 \times 5^{2}$ $\frac{1200 - 1164'}{\sqrt{616'}}$	(= 616) (= 1.450)	B1 M1		± Allow with	out √			
		$P(z < 1.450) = \Phi (1.450)$ = 0.927 (3 sf)		M1 A1	[5]	Correct tail c	onsister	nt with	their me	an
	(ii)	E(D) = 66 - 78	(= -12)	B1		Both needed				
		$\operatorname{Var}(D) = 7^2 + 5^2$	(= 74)							
		$\frac{0 - ('-12')}{\sqrt{74}}$	(= 1.395)	M1		\pm Allow with	iout √			
		$P(D > 0) = 1 - \Phi$ ('1.395') 0.0815 (3 sf)		M1 A1	[4]	Correct tail constraints constrained and constraints constraints and constrain				an
				Tota	l: 9					

			/ww.dynan	micpapers.com					
Paç	ge 7	Mark Scheme Cambridge International A Level – C		Nover	nber 2015	Syllabus 9709	Paper 71		
		Cambridge international A Level				0100			
7 (i)		Prob could be different later in day or on a different day oe	B1	[1]		or any explanation why not random or "Not random" or "Not representativ			
(ii)		Looking for decrease (or improvement) H ₀ : P(not arrive) = 0.2 H ₁ : P(not arrive) < 0.2	B1 B1	[2]	oe Allow " $p = 0.2$ "				
(iii)		Concluding that prob has <u>decreased</u> (or publicity has worked) when it hasn't oe	B1	[1]	In context				
(iv)		P(X = 0) and P(X = 1) attempted P(X \le 2) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + 30^{30}C_2 \times 0.8^{28} \times 0.2^2$ (= 0.0442) P(X \le 3) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + 30^{30}C_2 \times 0.8^{28} \times 0.2^2 + 30^{30}C_3 \times 0.8^{27} \times 0.2^3$ = 0.123 cr is X \le 2 P(Type I) = 0.0442 (3 sf)	M1 M1 B1 A1 A1	[5]	May be impl $P(X \le 3)$ Attempt $P(X$, 			
(v)		3 is outside cr No evidence that <i>p</i> has decreased (or that publicity has worked)	M1 A1 √^	[2]	or $P(X \leq 3)$	of 3 with thei = 0.123 which clusion. No co	n is > 0.05		
			Total	Total: 11					
			Total paper						