

Mark Scheme (Results)

January 2016

Pearson Edexcel International A Level in Statistics 1 (WST01)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043346
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M)
 marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol√ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams

- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct please send to review.

Jan2016 WST01 STATISTICS 1 International Mark Scheme

mark Scheme			
Question Number	Scheme	Marks	
1.(a)	$[F(5) =] \frac{5}{6}$	B1	
	_	(1)	
(b)	$E[X] = \frac{1}{4} - 2 \times \frac{1}{4} + 1 \times \frac{1}{6} + 3 \times \frac{1}{3} + 4 \times \frac{1}{12} + 6 \times \frac{1}{6} \text{or} \frac{1}{12} \left(-6 + 2 + 12 + 4 + 12 \right)$	M1	
	$=$ $\underline{2}$	A1	
		(2)	
(c)	$[E(X^2) =] (-2)^2 \times \frac{1}{4} + 1 \times \frac{1}{6} + 3^2 \times \frac{1}{3} + 4^2 \times \frac{1}{12} + 6^2 \times \frac{1}{6}$ (o.e.)		
	1 (12 2 25 15 72) 138 23	M1	
	$[E(X^{2}) =] (-2)^{2} \times \frac{1}{4} + 1 \times \frac{1}{6} + 3^{2} \times \frac{1}{3} + 4^{2} \times \frac{1}{12} + 6^{2} \times \frac{1}{6} $ (o.e.) $\underline{\text{or}} \frac{1}{12} (12 + 2 + 36 + 16 + 72) \underline{\text{or}} \frac{138}{12} \underline{\text{or}} \frac{23}{2} $ (o.e.)		
	$[Var(X) =]$ " $\frac{23}{2}$ "-"2" ²	M1	
	$=$ $\frac{7.5}{1.5}$ (o.e.)	A1	
(d)(i)	[E(Y) = 7 - 2E(X) =] 3	(3) B1	
	$[Var(Y) =] (-2)^2 Var(X) \underline{or} 4 Var(X)$	M1	
(11)	= 30	A1	
(iii)	$7-2X>X \Rightarrow 7>3X$	M1	
	so $X = 1$ or -2	A1	
	So $[P(Y > X) =] \frac{5}{12}$	A1 (6)	
	Notes		
(a)	B1 for $\frac{5}{6}$ or exact equivalents e.g. $\frac{10}{12}$ or 0.83		
(b)	For M1 in (b) & 1 st M1 in (c) take <u>full</u> method leading to answer: e.g. \div by 5 (or M1 for an attempt at E(X) with at least 3 correct products seen. Answer or		
(c)	1st M1 for an attempt at $E(V^2)$ with at least 2 compating due to seen (even if)	laballad Var(V)	
	1 st M1 for an attempt at $E(X^2)$ with at least 3 correct products seen (even if labelled $Var(X)$) Condone -2^2 if it later becomes $+4$ but only 3 correct products are needed for M1		
	2^{nd} M1 for a correct numerical expression for Var(X) ft their E(X) and their E(X ²)		
	A1 for 7.5 or any exact equivalent e.g. $\frac{15}{2}$ Answer only M1M1A1		
(d)(i)	B1 for 3 only		
(ii)	M1 for correct use of $Var(aX+b)$ formula. ft their value of $Var(X)$ even	if < 0	
(iii)	A1 for 30 only M1 for attempt at solving a correct inequality as far as $a > bx$ (a and b b	oth >0)	
(111)	1^{st} A1 for identifying $X = 1$ and -2 as the required values (or $Y = 11$ and 5)		
	2^{nd} A1 for $\frac{5}{12}$ or an exact equivalent		
ALT	[$y: 11\ 5\ 1\ -1\ -5$] Allow M1 in (ii) for attempt at $E(Y^2) = 39\ (\ge 3\ corn)$	rect products)	
	and $Var(Y) = "39" - "3"^2$ ft their $E(Y)$	acompact)	
	Allow M1 in (iii) for attempt at full set of Y values with corresponding X probs (≥ 3)	согтесі)	

Question Number	Sche	eme	Marks	s
Question Number	Scheme		Marks	s
2.(a)	[pass for] <u>30</u>	(labelled or 1st answer)	B1	(1)
(b)	[merit for] <u>46</u>	(labelled or 2 nd answer)	B1	(1)
(c)	$[1.5(Q_3 - Q_1) = 1.5 \times 16 = 24]$ so $c = 7$	d 0 and $d = 6$	B1, B1	
(d)	<u>68, 72, 79</u>		B2/1/0	(2)
(e)	5 < d therefore 5 is an outlier		M1	(2)
	* 1 20 30 40	50 60 70 80	A1	
	0 10 20 40	30 20 40 80	A1	
(4)	$(1 (1)^2)$		2626	(3)
(f)	$\frac{1}{2} \times \left(\frac{1}{4}\right)^2 \times 3$		M1M1	
	$=\frac{3}{32}$		A1	
			[12 max	(3)
	No	tes	[12 mai	INSI
(c) SC	$1^{\text{st}} B1$ for $c = 70$ $2^{\text{nd}} B1$ for $d = 1$	ne correct numbers with % e.g. 30° 6 (Allow B1B1 for unlabelled 70 for $d = 70$ or 6 and 70 in the wrong orde	llowed by 6))
(d)	B2 for all 3 correct values (and no extra value) (B1 for two correct)			
(e)	Fully correct box plot scores M1A1A1 M1 for identifying or stating(e.g. on the grid) that 5 is the only outlier or lower whisker ending at 6 or 10 (May be implied by a correct diagram) 1st A1 for only one outlier correctly marked at 5 (whisker(s) must stop above 5) 2nd A1 for a single lower whisker stopping at 10 (2 whiskers is A0 here) Condone 15 marked (e.g. dash or cross) on an otherwise correct whisker If the outlier is at 5 and lower whisker ends at 6 award M1A1A0			
(f)	$1^{\text{st}} M1$ for $\frac{1}{2} \times \left(\frac{1}{4}\right)^2$			
	2^{nd} M1 for an expression of the form $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$	$pq^2 \times 3$ where p and q are probabilities is a common incorrect answer and s		1 1 0
SC	Can award M0M1A0 if just $\frac{1}{64}$		COLES INITIALI	IAU
BC	A1 for $\frac{3}{32}$ or exact equivalent. Allow 0.0937 or 0.0938 following a correct expression.			

Question Number	Scheme	Marks	
3.(a)	$[S_{vs}] = 177.311 - \frac{36.8 \times 29}{8} = 43.911 = $ awrt $\underline{43.9}$ $[S_{ss}] = 209.72 - \frac{36.8^2}{8} = 40.44 = $ awrt $\underline{40.4}$	A1 M1	
	$[S_{ss}] = 209.72 - \frac{36.8^2}{8} = 40.44 = $ awrt 40.4	A1	
(b)	$r = \frac{\text{"43.911"}}{\sqrt{55.275 \times \text{"40.44"}}}, = 0.92875 = \text{awrt } \underline{\textbf{0.929}}$	(3) M1, A1	
(c)	r is close to 1 so there is support for the publisher's belief [if $1 > r \dots 0.5$] (Allow "yes" because "strong corr." <u>but</u> "yes" & "positive corr." is B0)	(2) B1ft	
(d)	$b = \frac{\text{"43.911"}}{55.275}, = 0.7944 = \text{awrt } 0.79$ $a = \overline{s} - b\overline{v} = 4.6 - \text{"0.7944"} \times 3.625 = 1.720$	(1) M1, A1 M1	
	s = 1.72 + 0.794v	A1 (4)	
(e)	$\frac{y}{1000} = "1.72" + "0.794" \times \left(\frac{x+50}{200}\right)$ $y = 1920 + 3.97x$	M1 A1 A1ft	
(f)	Gradient of textbooks is greater spend more advertising on textbooks	(3) B1ft dB1ft (2)	
		[15 marks]	
(a)	NotesM1for one correct expressionFor correct answer with respect to the property of the prope		
(b)	M1 for a correct expr' for r, ft their 43.911 (but not 177.311) and their 40.44 (not 209.72) A1 for awrt 0.929 (correct ans only scores 2/2 and ans only of 0.93 scores M1A0)		
(c)	B1ft for saying it <u>does</u> support the belief <u>or</u> a linear model/relationship is suitable and giving a suitable reason e.g. <u>strong</u> correlation [If $ r < 0.5$ allow " r close to 0" so "does <u>not</u> support" o.e.]		
(d)	In (d) and (e) a correct answer with no working is awarded the M marks by implication 1^{st} M1 for a correct expression for b , ft their 43.911 and allow 3sf values to be used 1^{st} A1 for awrt 0.79 or allow an exact fraction from the 3sf values e.g. $\frac{439}{553}$		
	2 nd M1 for a correct method for a , ft their value of b NB $\overline{s} = 4.6 = \frac{3.6}{8}$ and 2 nd A1 for equation for s in terms of v with $a = \text{awrt } 1.72$ and $b = \text{awrt } 0.794$	o .	
(e)	M1 for correct sub. in their equation giving an equation in y and x. Allow 1 slip e.g. $\frac{y}{100}$ 1 st A1 for $c = 1920$ (to 3 sf)		
ALT	2^{nd} A1ft for $d = \text{awrt } 3.97$ or $5 \times (\text{their } b \text{ correct to } 2 \text{ sig. figs.})$ Using coding formulae to get values for x, y requires a <u>full</u> method. Allow 1 slip but	correct $d \Rightarrow M1$	
(f)	1 st B1ft for a suitable reason based on gradients (o.e. in words e.g. rate of in 2 nd dB1ft for recommending spend more on advertising textbooks	ncrease)	
ft	If gradient in (e) < 1.2 then a <u>comparison of grads</u> leading to spending on no	ovels is B1B1	

Question Number	Scheme	Marks	
4.(a)	0.7 Pass O.3 Fail O.5 Pass O.7 Pass O.7 Fail O.9 Fail	B1 B1	
(b)	$\begin{vmatrix} 1 - 0.3 \times 0.5 \times 0.7 \times 0.9 & \underline{\text{or}} & 0.7 + (0.3 \times 0.5) + (0.3 \times 0.5 \times 0.3) + (0.3 \times 0.5 \times 0.7 \times 0.1) \\ = \underline{0.9055} \end{vmatrix}$	(2) M1 A1	
(c)	$[P(P_1 \cup P_2 \mid Pass) =] \frac{0.7 + "0.3" \times 0.5}{(b)}, = \frac{0.85}{"0.9055"}$ $= 0.938707 = awrt \underline{0.939}$	(2) M1, A1ft A1	
(d)	$p + (1-p)(p-0.2) \underline{\text{or}} 1 - (1-p)(1.2-p) \text{(o.e.)}$ e.g. $p + p - p^2 + 0.2p - 0.2 = 0.95 \Rightarrow p^2 - 2.2p + 1.15 = 0 (*)$	(3) M1 dM1A1cso (3)	
	$p = \frac{2.2 \pm \sqrt{2.2^2 - 4 \times 1.15}}{2} \text{or Complete the sq: } (p-1.1)^2 - 1.1^2 + 1.15 = 0$ $= \frac{2.2 \pm 0.4898}{2} \text{or} \frac{2.2 \pm \sqrt{0.24}}{2} \text{or} 1.1 \pm \sqrt{0.06} \text{or} (1.34), 0.855$	M1 A1	
	p = 0.85505102 $p = 0.855$	A1 (3)	
(a)	Notes 1 st B1 for correctly placing 0.3 and 0.5 2 nd B1 for correctly placing 0.7, 0.1 and 0.9		
(b)	Apart from (d), a correct answer with no incorrect working scores full marks. M1 for a correct expression (ft from their tree diagram) A1 for 0.9055 or exact equivalent e.g. $\frac{1811}{2000}$ Accept 0.906 only if correct expr' seen		
(c)	M1 for a correct ratio of probs ft their 0.3 and their answer to (b)[if < 1]. Num > Den M0 A1ft for correct numerator and their part (b) on denominator for awrt 0.939 or accept exact fraction eg $\frac{1700}{1811}$		
(d)	1st M1 for a correct expression for P(pass) in terms of p [condone $p - (p-1)(p-0.2)$ etc] 2nd dM1 dep. on 1st M1 for expanding brackets and forming an equation in p Allow one slip A1cso correct processing leading to printed answer. No incorrect working seen.		
(e)	M1 for attempt to solve given equation, correct expression. Condone jus 1^{st} A1 for correct expression and simplified square root or 1.34 and 0.855 2^{nd} A1 for $p = 0.855$ only (penalise any extra value > 1) Correct ans only so	cores 3/3	
Ans. only	For $\frac{1}{10} (11 - \sqrt{6})$ or 0.855 score M1A1A0 (not to 3dp) but for 0.855 can sc	ore M1A1A1	

Question Number	Scheme	Marks	
5.(a)	$[P(H < 18) =] P(Z < \frac{18 - 22}{10}) = P(Z < -0.4)$	M1	
	$= 1 - 0.6554$ $= 0.3446 \text{ or awrt } \underline{0.345}$	dM1 A1	
(b)	P(H > 50) = P(Z > 2.8) = 1 - 0.9974 = 0.0026 $P(H > 39) = P(Z > 1.7) = 1 - 0.9554 = 0.0446$	M1 A1 A1	
	$P(H > 50 \mid H > 39) = \frac{P(H > 50)}{P(H > 39)} \underline{\text{or}} \frac{"0.0026"}{"0.0446"}$	M1	
	$= 0.057 \sim 0.0585$	A1 (5)	
(c)	$\frac{18-\mu}{\sigma} = -0.8416$ $\frac{28-\mu}{\sigma} = 1$ Solving: $10 = 1.8416\sigma$	M1B1A1	
		M1 A1	
	σ = awrt $\frac{5.43}{\mu}$ = awrt $\frac{22.57}{\mu}$	A1	
		(6) [14 marks]	
	Notes		
(a)	1 st M1 for standardising with 18, 22 and 10. Allow $\pm \frac{18-22}{10}$		
	2^{nd} dM1 dependent on 1^{st} M1 for $1-p$ where $0.6 A1 for 0.3446 or better or awrt 0.345. NB Calculator gives 0.3445783Ans only 3/3$		
(b)	1 st M1 for correct standardisation and $1-q$ (where $q=0.9$) for one of these probs 1 st A1 for 0.0026 or better (calc 0.0025551) or $1-0.9974$ (or better) 2 nd A1 for 0.0446 or better (calc 0.0445654) or $1-0.9554$ (or better) 2 nd M1 for a correct ratio of probability expressions or values (ft their 0.0026 and 0.0446 but if num. > denom. then M0) 3 rd A1 for answer in the range 0.057~0.0585. No fractions but $\frac{13}{223}$ can score M1A1A1M1A0		
Ans. only	Can score full marks for either awrt 0.0583 (tables) or awrt 0.0573 (c		
(c)	1st M1 for attempt to standardise with μ , σ and 18 or 28 and set equal to a z value (\pm) The z values should be in the range (0.8, 0.9) for "18" and (0.95, 1.05) for "28" B1 for using $z = 0.8416$ or better (allow \pm) Calculator gives 0.8416212 1st A1 for both equations with \pm 1 and \pm 0.84 or better		
SC	28 – 11 18 – 11		
	2^{nd} M1 for solving their linear equations in μ & σ . Reducing to an equation in one variable. Correct processes allow one sign slip 2^{nd} A1 for σ = awrt 5.43 3^{rd} A1 for μ = awrt 22.57		
Calc	No $z = 0.8416$ or better seen: can award 6/6 for $\sigma =$ awrt 5.4300 or 5.4301 and μ	= awrt 22.57	
No working	For σ = awrt 5.43 and μ = awrt 22.57 award M1B0A1M1A1A1 i.e. 5/6		

Question Number	Scheme	Marks
6.(a)	$(\mu \text{ or } \overline{x} =) \frac{8360}{10} = \underline{836}$	B1
	$(\mu \text{ or } \overline{x} =) \frac{8360}{10} = \underline{836}$ $(\sigma =) \sqrt{\frac{\sum (x - \overline{x})^2}{10}} = \sqrt{6384} \text{ or } 4\sqrt{399}, = 79.89993 \text{ awrt } \underline{79.9}$	M1, A1
(b)	mean > median So <u>positive</u> (skew)	(3) B1 dB1 (2)
(c)	$\frac{776+896}{2}$ = 836 which is the same as \bar{x} or one is 60 above \bar{x} , one 60 below	B1
	So <u>no change</u> in the mean	dB1 (2)
(d)		B1
	Or $\sum (x-\overline{x})^2 \to 63840 + 2 \times 60^2 = 71040$ and $\frac{71040}{12} = 5920 < \frac{63840}{10}$	
	So standard deviation will <u>reduce</u>	dB1
		(2) [9 marks]
	Notes	
(a)	M1 for $\frac{63840}{10}$ with or without $\sqrt{}$ (ignore labels) or $s^2 = \frac{63840}{9}$	
	NB $\sum x^2 = 7052800$ but must see at least $\sigma^2 = \frac{7052800}{10} - ("836")^2$ for N	11
	A1 for awrt 79.9 Accept $s = \text{awrt } 84.2 \ (84.2219)$. Correct answer only M	I1A1
(b)	1 st B1 for a correct comparison of mean and median (allow just $836 > 815$) k (mean - median)	
	May see $\frac{k(\text{mean} - \text{median})}{\sigma \text{ or } \sigma^2}$ (o.e.) if so just check sign of answer (provide	
SC	2 nd dB1 dependent on 1 st B1 for positive (skew) only. Positive correlation is B0 If their mean is < 815 award B0B1 for the comparison <u>and</u> statement of negative skew	
(c)	1 st B1 for a suitable calculation to show(or statement) that mean of these t	,
	all 12) is the same e.g. new $\sum x = 8360 + 776 + 896 = 10032$, so mean =	$=\frac{10032}{12}=836$
SC	2 nd dB1 dependent on a suitable calculation or reason for stating "no change If they only say differences are the same (but not 1 above and 1 below no change then award B0B1	" o.e.
(d)	1 st B1 for a suitable calculation showing 60 or 3600 and comparing with 79 respectively (must see some calculation here) or calculation of new variance (5920 vs 6384) or st. dev (76.9 vs 79.9)	
	2 nd dB1 dependent on 1 st B1 for stating s.d. "reduces" (o.e.)	<i>,</i>
Use of Σx^2	Send arguments based on Σx^2 to review	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL	

www.dynamicpapers.com