

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Mechanics 2 (WME02/01)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.btec.co.uk">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

# Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2015
Publications Code IA042166
All the material in this publication is copyright
© Pearson Education Ltd 2015

www.dynamicpapers.com

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# PEARSON EDEXCEL IAL MATHEMATICS

# **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

#### 'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

# 'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. MO A1 is impossible.

#### 'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

# 3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\phantom{a}}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

# **General Principles for Mechanics Marking**

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
  - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
  - M(A) Taking moments about A.
  - N2L Newton's Second Law (Equation of Motion)
  - NEL Newton's Experimental Law (Newton's Law of Impact)
  - HL Hooke's Law
  - SHM Simple harmonic motion
  - PCLM Principle of conservation of linear momentum
  - RHS, LHS Right hand side, left hand side.

# June 2015 WME02 Mechanics 2 Mark Scheme

| Question<br>Number | Scheme                                                                                                   | Marks           |
|--------------------|----------------------------------------------------------------------------------------------------------|-----------------|
| 1.                 | Impulse momentum equation: $-3\mathbf{i} + 3\mathbf{j} = 0.3\mathbf{v} - 0.3(5\mathbf{i} + 3\mathbf{j})$ | M1A1            |
|                    | $\mathbf{v} = -5\mathbf{i} + 13\mathbf{j}$                                                               | A1              |
|                    | Change in KE: $\frac{1}{2} \times 0.3 \times ((25+169)-(25+9))$ their <b>v</b>                           | M1 <b>A1 ft</b> |
|                    | = 24 J (Accept - 24)                                                                                     | A1              |
|                    |                                                                                                          | (6)             |
|                    | Notes                                                                                                    |                 |
|                    | First M1 for attempt at imp-mom equation, with a difference of                                           |                 |
|                    | momenta                                                                                                  |                 |
|                    | First A1 for a correct equation                                                                          |                 |
|                    | Second A1 for $-5\mathbf{i} + 13\mathbf{j}$                                                              |                 |
|                    | Second M1 for difference in KE terms in either order (M0 if working in vectors)                          |                 |
|                    | Third A1 ft on their v, for a correct expression                                                         |                 |
|                    | Fourth A1 for 24 or 24 or 24.0 etc                                                                       |                 |
|                    |                                                                                                          |                 |
|                    |                                                                                                          |                 |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2a                 | Moving parallel to <b>i</b> when $t^3 = 8$ , $t = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1      |
|                    | Differentiate: $\mathbf{a} = -6t\mathbf{i} - 3t^2\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1A1    |
|                    | Substitute their <i>t</i> (>0) and use Pythagoras:                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/1 A 1 |
|                    | $ \mathbf{a}  =  -12\mathbf{i} - 12\mathbf{j}  = 12\sqrt{2} = 17.0 (\text{ms}^{-2})$                                                                                                                                                                                                                                                                                                                                                                                                               | M1 A1   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (5)     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| 2b                 | Integrate: $\mathbf{r} = (27t - t^3)\mathbf{i} + (8t - \frac{1}{4}t^4)\mathbf{j}(+\mathbf{C})$                                                                                                                                                                                                                                                                                                                                                                                                     | M1A1    |
|                    | Use $t = 1$ , $\mathbf{r} = -5\mathbf{i} + 2\mathbf{j}$ : $\mathbf{r} = (27t - t^3 - 31)\mathbf{i} + (8t - \frac{1}{4}t^4 - \frac{23}{4})\mathbf{j}$                                                                                                                                                                                                                                                                                                                                               | M1A1    |
|                    | $t=3$ , $\mathbf{r}=23\mathbf{i}-2\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (5)     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [10]    |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 2(a)               | B1 for $t = 2$<br>First M1 for attempt to differentiate (at least one power decreasing by 1) and $\mathbf{i}$ and $\mathbf{j}$ included<br>First A1 for correct expression<br>Second M1 for putting their $t \neq 0$ value in their vector $\mathbf{a}$ , which must contain $\mathbf{i}$ 's and $\mathbf{j}$ 's, AND using Pythag with sq root<br>Second A1 for $\sqrt{288}$ or 17 or better                                                                                                      |         |
| 2(b)               | First M1 for attempt to integrate (at least one power increasing by 1) and $\mathbf{i}$ and $\mathbf{j}$ included  First A1 for correct expression with or without $\mathbf{C}$ Second M1 for using $t = 1$ and $-5\mathbf{i} + 2\mathbf{j}$ , in their vector $\mathbf{r}$ to obtain a complete vector expression for $\mathbf{r}$ at time $t$ Second A1 for a correct expression ( $\mathbf{i}$ 's and $\mathbf{j}$ 's do not need to be collected)  Third A1 for $23\mathbf{i} - 2\mathbf{j}$ . |         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                    | Total mass $17m$ Moments about $4R$ : $4m\sqrt{2}a + 5m\sqrt{2}a + 2m\sqrt{4}a - 17m\overline{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1<br>M1A1     |
|                    | Moments about AB: $4m \times 2a + 5m \times 2a + 3m \times 4a = 17m\overline{x}$ $\overline{x} = \frac{30}{17}a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1             |
|                    | Moments about <i>BC</i> : $3m \times 1.5a + 5m \times 1.5a = 17m\overline{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1A1           |
|                    | $\overline{y} = \frac{12}{17}a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1             |
|                    | $\tan \theta = \frac{\overline{x}}{3a - \overline{y}}$ for their $\overline{x}$ , $\overline{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1 <b>A1ft</b> |
|                    | $\theta = 37.6^{\circ}, (38^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1             |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [10]           |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 3.                 | B1 for total mass $17m$ First M1 for a 'moments' equation about $AB$ or another line, with correct no. of terms, for wire AND masses First A1 for a correct equation (allow consistent omission of $m$ 's and/or $a$ 's and interchange of $a$ 's and $m$ 's) Second A1 for $30a/17$ , $1.8a$ or better oe for their axis (allow omission of $a$ ) Second M1 for a 'moments' equation about $AB$ or another line, with correct no. of terms, for wire AND masses Third A1 for a correct equation (allow consistent omission of $m$ 's and/or $a$ 's and interchange of $a$ 's and $m$ 's) Fourth A1 for $12a/17$ , $0.71a$ or better oe for their axis (allow omission of $a$ )                                             |                |
|                    | Third M1 independent for $\tan \theta = \frac{\overline{x}}{3a - \overline{y}}$ or its reciprocal (or their equivalents if they have used different axes). Allow omission of $a$ , if their $\overline{x}$ and $\overline{y}$ are numbers and $\overline{x}$ and $\overline{y}$ do not need to be substituted (they may not have an $\overline{x}$ and $\overline{y}$ )  Fifth A1 <b>ft</b> on their $\overline{x}$ and $\overline{y}$ Sixth A1 for 38° or better (37.5685) <b>N.B.</b> The first two M marks are for a complete method in each case so if they only find the CM of the wire e.g. (1.5 $a$ , $a$ ) or only find the CM of the particle system e.g. (2.4 $a$ , 0), it's <b>M0</b> . However, if they do then |                |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                    | combine, the A1 is for all the equations that they use.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                    | <b>N.B.</b> They may take A as their origin. Then $\overline{x}$ is 30/17, $\overline{y} = 39/17$                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                    | and $\tan \theta = \overline{x} / \overline{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    | <b>N.B.</b> If they take the CM of the wire $(12m)$ only, to be at the centroid of triangle $ABC$ , $(4a/3, a)$ , and then combine with the masses, can score max B1M0M0M1A1ftA0. Beware! Since the CM of the wire only, is $(1.5a, a)$ , they will get a correct answer for $\overline{y}$ using this incorrect method. Similarly, if they take the CM of the wire $(12m)$ to be at some other point, with no working, often at $(2a, 1.5a)$ , and then combine with the masses, can score max B1M0M0M1A1ftA0. |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |

| Question<br>Number | Scheme                                                                                                                                                              | Mar   | ks    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| <b>4</b> a         | Normal reaction $6.5g \cos \theta \left( = 6.5g \times \frac{12}{13} = 6g \right)$<br>Use of $F = \mu R$ $F = \frac{1}{3} \times 6.5g \times \frac{12}{13} = 2g$    | B1    |       |
|                    | Use of $F = \mu R$ $F = \frac{1}{3} \times 6.5g \times \frac{12}{13} = 2g$                                                                                          | M1    |       |
|                    | Work-energy principle: $\frac{6.5}{2} \times 36 = 6.5g \sin \theta \times d + F \times d$                                                                           | M1    | A2 ft |
|                    | Substitute and solve for d: $117 = dg \left( 6.5 \times \frac{5}{13} + 2 \right)$                                                                                   | DM1   |       |
|                    | $d = \frac{117}{4.5g} = 2.7 \text{ m to 2 s.f.}$ <b>GIVEN ANSWER</b>                                                                                                | A1    | (7)   |
| 4b                 | $\frac{6.5}{2} \times 6^2 - \frac{6.5}{2} \times v^2 = 2Fd$                                                                                                         | M1 A2 | 2     |
|                    | $v = 2 \mathrm{m \ s^{-1}},  2.0 ,  2.00$                                                                                                                           | A1    | (4)   |
| 4balt1             | Energy: $\frac{6.5}{2} \times v^2 = 6.5g \sin \theta \times d - Fd$                                                                                                 | M1 A2 | 2     |
|                    | $v = 2 \text{ m s}^{-1}, 2.0, 2.00$                                                                                                                                 | A1    | (4)   |
| 4balt2             | F=ma & suvat:                                                                                                                                                       | M1    |       |
|                    | $6.5g\sin\theta - F = 6.5a$                                                                                                                                         | A1    |       |
|                    | $v^2 = 2 \times (g/13 \text{ oe}) \times d$                                                                                                                         | A1    |       |
|                    | $v = 2 \text{ m s}^{-1}, 2.0, 2.00$                                                                                                                                 | A1    | (4)   |
|                    | Notes                                                                                                                                                               |       |       |
|                    | B1 for $6.5 \text{gcos } \theta$ (This could be scored in (b) if not seen in (a))                                                                                   |       |       |
|                    | First M1 for $F = 1/3$ x their $R$ (This could be scored in (b) if not seen in (a))<br>Second M1 for work-energy equation: Need KE, PE $(k \times d\sin\theta)$ and |       |       |
|                    | WD $(n \times d)$ terms                                                                                                                                             |       |       |
| 4a                 | First and second A marks $\mathbf{ft}$ on their $F$ , -1 each error                                                                                                 |       |       |
|                    | Third M1 <b>dependent</b> on second M1, for solving for <i>d</i> .                                                                                                  |       |       |
|                    | Third A1 for 2.7 (2 SF) <b>GIVEN ANSWER.</b> Must finish with 2.7 but                                                                                               |       |       |
|                    | (2SF) may be omitted.                                                                                                                                               |       |       |
|                    | <b>N.B.</b> No marks for a non-energy method.                                                                                                                       |       |       |
|                    | M1 for work-energy equation: Need 2 KE terms and 2 x WD (n x d)                                                                                                     |       |       |
|                    | terms                                                                                                                                                               |       |       |
|                    | First A2 -1 each error                                                                                                                                              |       |       |
| <b>4b</b>          | Third A1 for 2 m s <sup>-1</sup> . Penalise inaccurate answers e.g. 2.01 or 2.02                                                                                    |       |       |
| ••                 | Alt 1 M1 for work anarov aquation, Need VE DE (L. v. dain 0) - v. 1 WD                                                                                              |       |       |
|                    | Alt 1 M1 for work-energy equation: Need KE, PE $(k \times d\sin \theta)$ and WD $(n \times d)$ terms                                                                |       |       |
|                    | First A2 -1 each error                                                                                                                                              |       |       |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                        | Marks |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                    | Third A1 for 2 m s <sup>-1</sup> . Penalise inaccurate answers e.g. 2.01 or 2.02 <b>Alt 2</b> M1 for a complete method ( $F = ma$ and $v^2 = u^2 + 2as$ )  First A1 for $F = ma$ , equation in $a$ only  Second A1 for $v^2 = 2 \times (g/13 \text{ oe}) \times d$ (i.e. $a$ must be correct)  Third A1 for 2 m s <sup>-1</sup> Penalise inaccurate answers e.g. 2.01 or 2.02 |       |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5a                 | CLM: $3mu = 3mv + 4mw$                                                                                                                                                                                                                                                                                                                                                                                                                   | M1A1  |
|                    | Impact law: $w - v = \frac{1}{3}u$                                                                                                                                                                                                                                                                                                                                                                                                       | M1A1  |
|                    | Solve for w: $w = \frac{4}{7}u$                                                                                                                                                                                                                                                                                                                                                                                                          | M1A1  |
|                    | Impulse = $4m \times \frac{4u}{7} = \frac{16}{7}mu$ *Given answer*                                                                                                                                                                                                                                                                                                                                                                       | A1    |
|                    | N.B. Given answer, so working needs checking                                                                                                                                                                                                                                                                                                                                                                                             | (7)   |
| 5b                 | $\frac{1}{2} \times 5m \times y^2 = \frac{72}{245}mu^2$                                                                                                                                                                                                                                                                                                                                                                                  | B1    |
|                    | $CLM: \frac{16}{7}mu = 4mx + 5my$                                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1 |
|                    | Impact: $y - x = e \times \frac{4}{7}u$                                                                                                                                                                                                                                                                                                                                                                                                  | M1A1  |
|                    | $e = \frac{7u}{35} \times \frac{7}{4u} = \frac{7}{20}$                                                                                                                                                                                                                                                                                                                                                                                   | A1    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                          | (6)   |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                    | [13]  |
| 5a                 | First M1 for CLM, correct no. of terms, allow cancelled $m$ 's First A1 for a correct equation Second M1 for Impact Law, correct way up Second A1 for a correct consistent equation Third M1 for solving for either $v$ or $w$ Third A1 for either $v$ or $w$ in terms of $u$ ( $w = \frac{4}{7}u$ or $v = \frac{5}{21}u$ ) Fourth A1 for <b>given answer</b> fully justified. ( $I = 4m.\frac{4}{7}u$ or $-I = 3m(\frac{5}{21}u - u)$ ) |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 5b                 | B1 for $\frac{1}{2}5my^2 = \frac{72}{245}mu^2$ their $y$ First M1 for CLM, condone sign errors  First A1 for $4m.4u/7 = 4mx + 5my$ their $x$ and $y$ Second M1 for Impact Law, correct way up (consistent signs)  Second A1 for $e$ . $4u/7 = -x + y$ their $x$ and $y$                                                                                                                                                                  |       |

| Question<br>Number | Scheme                                                                                                                                                       | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                    | Third A1 for $e = 7/20$ oe                                                                                                                                   |       |
|                    | $x = \frac{1}{7}u$ $y = \frac{12}{35}u$ <b>N.B.</b> $y = \frac{16}{63}u(1+e)$ $e^{2} + 2e - \frac{329}{400} = 0$ $(e + \frac{47}{20})(e - \frac{7}{20}) = 0$ |       |
|                    |                                                                                                                                                              |       |
|                    |                                                                                                                                                              |       |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mai  | ks  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 6a                 | Smooth peg – no friction, so just the normal reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1   | (1) |
| 6b                 | Moments about A:<br>$3aN = W \times 2a \times \cos \alpha + kW \times 4a \times \cos \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                             | M1 A | 42  |
|                    | $N = \frac{W}{3\sqrt{10}} (6+12k) = \frac{\sqrt{10}}{5} W(1+2k)$ *Given Answer*                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1   | (4) |
| 6c                 | Use of $F \le \frac{3}{4}R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1   |     |
|                    | Resolve horizontally: $F = N \sin \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1A  |     |
|                    | Resolve vertically: $R + N \cos \alpha = W(1+k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1A  |     |
|                    | Sub into $F \leq \frac{3}{4}R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |
|                    | Sub into $F \le \frac{3}{4}R$ $\frac{\sqrt{10}}{5}W(1+2k)\frac{1}{\sqrt{10}} \le \frac{3}{4}(W(1+k) - \frac{\sqrt{10}}{5}W(1+2k)\frac{3}{\sqrt{10}})$                                                                                                                                                                                                                                                                                                                                                                    | DM1  |     |
|                    | $k \leq \frac{2}{11}$ *Given Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | A1  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | (7) |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |
| 6a                 | B1 for smooth peg so no friction so just normal reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |
| 6b                 | M1 for moments about A (or any other complete method) First A2 for an equation in N only, -1 each error Third A1 for the <b>given answer.</b> A0 if they go from decimals to surd form                                                                                                                                                                                                                                                                                                                                   |      |     |
| 6с                 | First M1 for use of $F \le \frac{3}{4}R$ or $F = \frac{3}{4}R$ (Allow $\mu$ instead of $\frac{3}{4}$ ) Second M1 for resolving horizontally or another moments equation First A1 for a correct equation Third M1 for resolving vertically or another moments equation Second A1 for a correct equation Fourth M1 dependent on all 3 previous M's for producing an equation or inequality in $k$ only. Third A1 for $k \le 2/11$ given answer (must have worked with an inequality all the way through to earn this mark) |      |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 7a                 | Vertical speed = 0: $v = 9 - gt = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1     |
|                    | $t = \frac{9}{g} = 0.92 (\text{s})  0.918$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)    |
| <b>7</b> b         | $x = 4t, y = 9t - \frac{1}{2}gt^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1, B1 |
|                    | $x = 4t, y = 9t - \frac{1}{2}gt^{2}$ Use $y = x(=k)$ : $4t = 9t - \frac{1}{2}gt^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1     |
|                    | $k = \frac{40}{g} = 4.1  (4.08)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 (4) |
|                    | Complete worth design or the College C |        |
| 7c                 | Complete method using symmetry of times to find other pt:<br>Time to $A = k/4 = 10/g =>$ time to other pt = $9/g - (10/g - 9/g) = 8/g$<br>So $x = 4 \times 8/g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1     |
|                    | x = 4k/5 or $(72/g - k)$ or $(7.3(5) - k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1     |
|                    | So $x = 4 \times 8/g$<br>x = 4k/5 or $(72/g - k)$ or $(7.3(5) - k)\mathbf{r} = \left(\frac{4}{5}k\right)\mathbf{i} + k\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1 (3) |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 7c(alt)            | Complete method using symmetry of horiz distances to find other pt :<br>At max ht, $x = 4 \times 9/g = 36/g =>$ At other pt, $x = 36/g - (k - 36/g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1     |
|                    | Other point: $x = 4k/5$ or $(72/g - k)$ or $(7.3(5) - k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1     |
|                    | $\mathbf{r} = \left(\frac{4}{5}k\right)\mathbf{i} + k\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)    |
| 7c(alt)            | Same height: $\frac{40}{g} = 9t - \frac{1}{2}t^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1     |
|                    | Other point: $x = 4k/5$ or $(72/g - k)$ or $(7.3(5) - k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1     |
|                    | $\mathbf{r} = \left(\frac{4}{5}k\right)\mathbf{i} + k\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)    |
|                    | NB: an answer of $\mathbf{r} = 3.3\mathbf{i} + 4.1\mathbf{j}$ or $\mathbf{r} = \frac{32}{g}\mathbf{i} + \frac{40}{g}\mathbf{j}$ scores M1A1A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

| 7d | $4i + kj$ perpendicular to $4i + 9j$ : $\frac{4}{k} = -\frac{9}{4}$ , $k = -\frac{16}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1A1     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    | $-\frac{16}{9} = 9 - gT,  T = \frac{97}{9g} = 1.1  (1.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1A1     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)      |
| 7d | <b>OR</b> : vert: $v = 9 - gT$ AND combine with the horiz cpt.<br>$\mathbf{v} = 4\mathbf{i} + (9 - gT)\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1<br>A1 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Al       |
|    | $\frac{4}{9-gT} = -\frac{9}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1       |
|    | $T = \frac{97}{9g} = 1.1 \ (1.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 (4)   |
|    | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)      |
|    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 7a | M1 for $0 = 9 - gt$ (or any other complete method) condone sign errors A1 for $9/g$ or $0.918$ or $0.92$ (correctly obtained) $(45/49 \text{ is A0})$                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 7b | First B1 for $k = 4t$<br>Second B1 for $k = 9t - \frac{1}{2}gt^2$<br>M1 for eliminating and solving for $k$ or $t$<br>A1 for $k = 40/g$ or $4.08$ or $4.1$                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 7c | M1 for a complete method using symmetry on times First A1 for $x = {}^4/5 k$ Second A1 for ${}^4/5 k \mathbf{i} + k \mathbf{j}$ OR  M1 for a complete method using symmetry on horiz. distances First A1 for $x = {}^4/5 k$ Second A1 for ${}^4/5 \mathbf{i} + k \mathbf{j}$ OR  M1 for $k = 9t - {}^1/2 gt^2$ First A1 for $x = {}^4/5 k$ Second A1 for ${}^4/5 k \mathbf{i} + k \mathbf{j}$ N.B. Correct answers not in terms of k, score M1A1A0                                                                                                                                     |          |
| 7d | First M1 for attempt to find a vector of form $(4\mathbf{i} + k\mathbf{j})$ which is perp <sup>ar</sup> to $4\mathbf{i} + 9\mathbf{j}$ (must use reciprocal, but condone missing – sign) First A1 for $k = -^{16}/9$ Second M1 for an equation in $T$ only $(-^{16}/9 = 9 - gT)$ Second A1 for $T = 97/(9g)$ or 1.10 or 1.1  OR First M1 for attempt to find velocity vector at time $T$ First A1 for $4\mathbf{i} + (9 - gT)\mathbf{j}$ – This may not be explicit but they must have BOTH cpts. Second M1 for using the perpendicularity with $4\mathbf{i} + 9\mathbf{j}$ to form an |          |

| equation in $T$ only (must use reciprocal, but condone missing – sign)<br>Second A1 for $T = 97/(9g)$ or 1.10 or 1.1<br><b>N.B.</b> $-9 = 9 - gT$ ( $T = 1.84$ ) is M0A0M0A0 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |

| www.dynamicpapers.com |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom