

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)

January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks	
1 (a)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$	M1 A1	
	$S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	A1 (3)	
(b)	$b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1 M1	
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$	A1 (4)	
(c)	y = -10.7 + 9.48x Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks improvement</u>	B1ft (1)	
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1 (2)	
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1 (1) [11]	
(a)	M1 for a correct expression $1^{st} A1$ for AWRT 11.4 for S_{xx}		
	2^{nd} A1 for AWRT 108 for S_{xy}		
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A1A1		
	1^{st} M1for using their values in correct formula 1^{st} A1for AWRT 9.5 2^{nd} M1for correct method for a (minus sign required) 2^{nd} A1for equation with a and b AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)Must have a full equation with a and b correct to awrt 3 sf		
(c)	B1ft for comment conveying the idea of <u>b marks per hour</u> . Must mention value of b the ft their value of b. No need to mention "extra" but must mention "marks" and "le.g. "9.5 times per hour" scores B0		
(d)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21		
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the ra</u> They do not have to mention the values concerned here namely 8 h or 0.5 - 4	ange.	

Question Number	Scheme	Marks	
2 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast} P(E \cap B) = P(E B) \times P(B) = \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1 (2)	
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or } P(E' \mid B') \text{or } P(B' \cap E) \text{or } P(B \cap E')$ $= \frac{62}{75} = \frac{13}{25} = \frac{12}{75} = \frac{32}{75}$ $P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \text{or } 0.173$ $P(E \mid B) = 0.36 \neq 0.40 = P(E) \text{or } P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$	M1 A1 M1 A1 (4)	
(C)	$P(E B) = 0.36 \neq 0.40 = P(E)$ or $P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So <i>E</i> and <i>B</i> are <u>not</u> statistically independent	M1 A1 (2) [8]	
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or example NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.	act equiv.	
(b)			
(c)	$\begin{array}{l} \underbrace{Or}_{2} a \text{ full method for } P(B' \cap E) \underbrace{or}_{2} P(B \cap E') \text{ [or other valid method]}\\ 2^{nd} M1 & \text{for a method leading to answer e.g. } 1 - P(E \cup B)\\ \underbrace{or}_{2} P(B') \times P(E' \mid B') \underbrace{or}_{2} P(B') - P(B' \cap E) \underbrace{or}_{2} P(E') - P(B \cap E')\\ \hline \underbrace{Venn \text{ Diagram }}_{3} 1^{st} \text{ M1 for diagram with attempt at } \frac{2}{5} - P(B \cap E) \text{ or } \frac{2}{3} - P(B \cap E) \text{ . Ca}\\ 1^{st} \text{ A1 } & \text{for a correct first probability as listed or } 32, 18 \text{ and } 12 \text{ on Venn Diagram}\\ 2^{nd} M1 & \text{for identifying suitable values to test for independence e.g. } P(E) = 0.40 \text{ and } P(E B)\\ \underbrace{Or}_{2} P(E) \times P(B) = \dots \text{ and } P(E \cap B) = \text{their (a) [but their (a) } \neq \frac{2}{5} \times \frac{2}{3}]. \text{ Values see}\\ \end{array}$) = 0.36	
	A1 for correct values and a correct comment Diagrams You may see these or find these useful for identifying probabilities.		
	$\frac{2}{1/3} \xrightarrow{\mathbb{B}^{\prime}} \xrightarrow{\mathbb{E}^{\prime}} \xrightarrow{\mathbb{E}$	scores M1A0	

Ques Num			Scheme		Marks		
3	(a)	$E(X) = 0 \times 0.4 + 1 \times 0.3 + \dots + 3 \times 0.1, = 1$			M1, A1 (2	2)	
	(b)				M1, A1 (2	2)	
	(b)		$F(1.5) = [P(X \le 1.5) =] P(X \le 1), = 0.4 + 0.3 = 0.7$				
	(c)	$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3$	$++3^2 \times 0.1$, = 2		M1, A1		
		$Var(X) = 2 - 1^2$, = 1	(*)		M1, A1cso (4		
	(d)	$Var(5-3X) = (-3)^2 Var(2)$	X), = 9		M1, A1 (2	2)	
	(e)	Total	Cases	Probability			
			$(X=3) \cap (X=1)$	$0.1 \times 0.3 = 0.03$			
		4	$(X=1) \cap (X=3)$	$0.3 \times 0.1 = 0.03$			
			$(X=2) \cap (X=2)$	$0.2 \times 0.2 = 0.04$	B1B1B1		
		5	$(X=3) \cap (X=2)$	$0.1 \times 0.2 = 0.02$			
			$(X=2) \cap (X=3)$	$0.2 \times 0.1 = 0.02$	M1		
		6	$(X=3) \cap (X=3)$	$0.1 \times 0.1 = 0.01$	A1		
		Total probability = $0.03 + 0.$	03+0.04 +0.02 + 0.02 + 0	0.01 = 0.15	A1 (6	,	
	(a)	M1 for at least 3 terms se	en. Correct answer only	scores M1A1. Dividing		-	
	(b)	M1 for $F(1.5) = P(X \le 1)$.	[Beware : $2 \times 0.2 + 3 \times 0.2$.1 = 0.7 but scores M0A	\ 0]		
	(c)	1 st M1 for at least 2 non-zero	terms seen $E(V^2) = 2$	alona is MO. Condona a	alling $E(V^2) - Vor(V)$		
					$\operatorname{annig} \mathbb{E}(X) = \operatorname{val}(X).$		
ALT		1 st A1 is for an answer of 2 or a fully correct expression. 2 nd M1 for $-\mu^2$, condone 2 – 1, unless clearly 2 Allow $2-\mu^2$, with = 1 even if $E(X) \neq 1$					
		2 nd A1 for a fully correct sol	lution with no incorrect w	vorking seen, both Ms re	equired.		
		$\sum (x-\mu)^2 \times \mathbf{P}(X=x)$					
		1 st M1 for an attempt at a fu	Il list of $(x - \mu)^2$ values	and probabilities 1 st A	1 if all correct		
		2^{nd} M1 for at least 2 non-zer					
		2 will for at least 2 non-zer	$(\mu) = (\mu) + 1$	X = X seen. 2 X is	10.4 + 0.2 + 0.4 1		
	(d)	M1 for use of the correct	formula. $-3^2 \operatorname{Var}(X)$ is	M0 unless the final answ	wer is >0.		
	(e)	Can follow through	their $Var(X)$ for M1				
		1 st B1 for all cases listed f	or a total of 4 or 5 or 6.	e.g. (2,2) counted twice	for a total of 4 is B0		
ALT		2^{nd} B1 for all cases listed for	or 2 totals	•	}		
		3 rd B1 for a complete list o Using Cumulative probabilit		}These may be high	lighted in a table		
		1 st B1 for one or more cun	nulative probabilities use				
			probabilities used. 3 rd B		3; 2, ≥2; 3, ≥1		
		1 st A1 for all 6 correct probabilities listed (0.03, 0.03, 0.04, 0.02, 0.02, 0.01) needn't be added.					
		2 nd A1 for 0.15 or exact eq	uivalent only as the final	answer.			

Questic Numbe		Scheme	Marl	۲S
4 (a) $Q_2 = 1$	$=53, Q_1 = 35, Q_3 = 60$		B1
(b) $Q_3 - Q_3$	$Q_1 = 25 \Longrightarrow Q_1 - 1.5 \times 25 = -2.5$ (no outlier)	M1	(3)
		$Q_3 + 1.5 \times 25 = 97.5$ (so 110 is an outlier)	A1	(2)
	c)		M1	
	0	10 20 30 40 50 60 70 80 90 100 T10 120 	A1ft A1ft	(3)
(d)			
	$\sum y =$	= 461, $\sum y^2 = 24\ 219$ \therefore $S_{yy} = 24219 - \frac{461^2}{10}$, = 2966.9 (*)	B1, B1, B1cso	(3)
(e)	18.2 18.2		(3)
(f) $r = \sqrt{\sqrt{1-r}}$	$\frac{-18.3}{3463.6 \times 2966.9} \text{ or } \frac{-18.3}{3205.64} = -0.0057 \text{ AWRT} - 0.006 \text{ or } -6 \times 10^{-3}$	M1 A1	(2)
	r sugg	ests correlation is close to zero so parent's claim is not justified	B1	(1) [14]
(a) 1 st B1 2 nd B1 3 rd B1	for median for lower quartile for upper quartile	I	<u></u>
(b) M1 A1	for attempt to find one limit for both limits found and correct. No explicit comment about outliers needed.		
(2 nd A1 Pen	 M1 for a box and two whiskers 1st A1ft for correct position of box, median and quartiles. Follow through their values. 2nd A1ft for 17 and 77 or "their" 97.5 and *. If 110 is not an outlier then score A0 here. Penalise no gap between end of whisker and outlier. Must label outlier, needn't be with *. <u>Accuracy</u> should be within the correct square so 97 or 98 will do for 97.5 		
(d) 1^{st}B1	for $\sum y$ N.B. $(\sum y)^2 = 212521$ and can imply this mark		
	2 nd B1	for $\sum y^2$ or at least three correct terms of $\sum (y - \overline{y})^2$ seen.		
	3 rd B1	for complete correct expression seen leading to 2966.9. So all 10 terms of $\sum_{i=1}^{n} (1 - 1)^{n}$	$(y-\overline{y})^2$	
(e) _{M1}	for attempt at correct expression for r. Can ft their S_{yy} for M1.		
	f) B1	for comment <u>rejecting</u> parent's claim on basis of <u>weak or zero</u> correlation Typical error is "negative correlation so comment is true" which scores B0 Weak negative or weak positive correlation is OK as the basis for their rejection	L .	

Question Number	Scheme	Mar	ks
5 (a)	8-10 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 16-25 hours: width = $25.5 - 15.5 = 10$ so represented by 5 cm 8- 10 hours: height = fd = $18/3 = 6$ represented by 3 cm 16-25 hours: height = fd = $15/10 = 1.5$ represented by <u>0.75 cm</u>	B1 M1 A1	(3)
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1	
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
	$Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5[=15.3] \text{or } 10.5 + \frac{(78.75 - 54)}{25} \times 5[=15.45 \setminus 15.5]$ IQR = (15.3 - 6.3) = <u>9</u>	A1 A1ft	(5)
(c)	$\sum fx = 1333.5 \Longrightarrow \overline{x} = \frac{1333.5}{104} = $ AWRT <u>12.8</u>	M1 A1	
(d)	$\sum fx^2 = 27254 \Longrightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} \qquad \text{AWRT } \underline{9.88}$	M1 A1	(4)
(e)	$Q_3 - Q_2 [= 5.1] > Q_2 - Q_1 [= 3.9]$ or $Q_2 < \overline{x}$ So data is positively skew	B1ft dB1	(2)
	Use median and IQR, since data is skewed <u>or</u> not affected by extreme values or outliers	B1 B1	(2) [16]
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where SF \neq	- 1	
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M	41A0	
	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5 or 53 1 st A1 for 10.2 for median. Using (<i>n</i> + 1) allow awrt 10.3		
	2^{nd} A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) <u>Mu</u>	<u>NB</u> : 1st see	
	3^{rd} A1 for correct expressions for both Q_1 and Q_3	some	
(c)		nethod	
(d)	2 nd M1 for attempting $\sum fx^2$ and σ_x , $$ is needed for M1. Allow $s = awrt 9.93$		
	1 st B1ft for suitable test, values need not be seen but statement must be compatible with	ith	
(e)	2nd dB1values used. Follow through their values2nd dB1Dependent upon their test showing positive and for stating positive skew If their test shows negative skew they can score 1st B1 but lose the second		
(-)	1 st B1 for choosing median and IQR. Must mention both. }Award independent 2 nd B1 for suitable reason } e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned	<u>dently</u>	

Question			
Number	Scheme	Marks	
6 (a)	$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$	M1	()
	= P(Z < 1.8) = 0.9641 (allow awrt 0.964)	A1	(2)
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$		
	$\begin{vmatrix} 1 - 0.1151 = 0.8849 \\ \Rightarrow z = -1.2 \end{vmatrix} $ (allow ± 1.2)	M1 B1 M1A1	(4)
	$\therefore \frac{d-30}{5} = -1.2 \qquad \qquad \underline{d=24}$		()
(c)			
	$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2$ or $-\text{their } z$	M1	
	<u>e = 36</u>	A1	(2)
(d)	$P(d < X < e) = 1 - 2 \times 0.1151$ = 0.7698 AWRT <u>0.770</u>	M1 A1	(2) [10]
	Answer only scores all marks in each section BUT check (b) and (c) are in correct o	rder	
(a)	M1 for standardising with σ , $z = \pm \frac{39 - 30}{5}$ is OK		
	A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A0	0	
(b)	1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding d B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a z value by its use. This mark is only available in part (b).		
	2^{nd} M1 for $\left(\frac{d-30}{5}\right)$ = their negative z value (or equivalent)		
(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their <i>d</i> for M1 Must explicitly see the method used unless the answer is correct.	here	
(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151 <u>or</u> If their $d <$ their e using their values with $P(X < e) - P(X < d)$ If their $d \ge$ their e then they can only score from an argument like 1 – 2x0.1151 A negative probability or probability > 1 for part (d) scores M0A0		