

6. (a)	$\lambda=-4 \rightarrow a=18, \quad \mu=1 \rightarrow b=9$	M1 A1, A1 (3)
(b)	$\left(\begin{array}{l} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ 1 \\ -1 \end{array}\right)=0$	M1
	$\therefore 8+\lambda+12+\lambda-14+\lambda=0$ Solves to obtain $\lambda \quad(\lambda=-2)$	A1 dM1
	Then substitutes value for λ to give P at the point (6,10, 16) (any form)	M1, A1 (5)
(c)	$\mathrm{OP}=\sqrt{36+100+256}$	M1
	$(=\sqrt{392})=14 \sqrt{2}$	A1 cao (2) [10]
7. (a)	$\begin{equation*} \frac{d V}{d r}=4 \pi r^{2} \tag{1} \end{equation*}$	B1
(b)	Uses $\frac{d r}{d t}=\frac{d V}{d t} \cdot \frac{d r}{d V}$ in any form, $\quad=\frac{1000}{4 \pi r^{2}(2 t+1)^{2}}$	M1,A1 (2)
(c)	$V=\int 1000(2 t+1)^{-2} d t$ and integrate to $p(2 t+1)^{-1}, \quad=-500(2 t+1)^{-1}(+c)$ Using $\mathrm{V}=0$ when $\mathrm{t}=0$ to find $\mathrm{c}, \quad(\mathrm{c}=500$, or equivalent)	$\begin{aligned} & \text { M1, A1 } \\ & \text { M1 } \end{aligned}$
	$\therefore V=500\left(1-\frac{1}{2 t+1}\right)$ (any form)	A1 (4)
(d)	(i) Substitute $\mathrm{t}=5$ to give V ,	M1,
	then use $r=\sqrt[3]{\left(\frac{3 V}{4 \pi}\right)}$ to give $r,=4.77$	M1, A1
	(ii) Substitutes $\mathrm{t}=5$ and $\mathrm{r}=$ 'their value' into 'their' part (b)	M1
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.0289 \quad\left(\approx 2.90 \times 10^{-2}\right)(\mathrm{cm} / \mathrm{s}) * \quad \mathrm{AG}$	A1 (2) [12]

8. (a) Solves $\mathrm{y}=0 \Rightarrow \cos t=\frac{1}{2}$ to obtain $t=\frac{\pi}{3}$ or $\frac{5 \pi}{3} \quad$ (need both for A1)

Or substitutes both values of t and shows that $y=0$
(b)

$$
\frac{d x}{d t}=1-2 \cos t
$$

Area $=\int y d x=\int_{\pi / 3}^{5 \pi / 3}(1-2 \cos t)(1-2 \cos t) d t=\int_{\frac{\pi}{3}}^{\frac{5 \pi}{3}}(1-2 \cos t)^{2} d t \quad * \quad$ AG
(c)

Area $=\int 1-4 \cos t+4 \cos ^{2} t d t \quad 3$ terms
$=\int 1-4 \cos t+2(\cos 2 t+1) d t \quad$ (use of correct double angle formula)
$=\int 3-4 \cos t+2 \cos 2 t d t$
$=[3 t-4 \sin t+\sin 2 t]$

Substitutes the two correct limits $t=\frac{5 \pi}{3}$ and $\frac{\pi}{3}$ and subtracts.

$$
=4 \pi+3 \sqrt{3}
$$

