

Cambridge International Examinations Cambridge International Advanced Subsidiary Level

MATHEMATICS

9709/22 October/November 2016

Paper 2 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

	www.dynan	ncpapers	.com
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2016	9709	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllab	us	Paper
	Cambridge International AS Level – October/November 2016	9709	9	22

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

						www.dynan		.com	-
	Pa	age 4	Mark Schem				Syllabus	Paper	_
			Cambridge International AS Level -	- Octob	er/N	ovember 2016	9709	22	
1			non-modulus equation $(0.4x - 0.8)^2 = 4$ or alent or corresponding pair of linear ons	B1		SR One solution	only – B1		
		Solve equation	3-term quadratic equation or pair of linear ons	M1		Must see some ev quadratic for M1 For a pair of linea sign difference	for at least or	ne value of .	x
		Obtair	n –3 and 7	A1	[3]	If extra solutions	are given the	en A0	
2	(i)	Use 4	$y = 2^{2y}$	B1					
		Attem	pt solution of quadratic equation in 2^y	M1					
		Obtair	a finally $2^{y} = 7$ only	A1	[3]				
	(ii)		logarithms to solve equation of form where $k > 0$	M1		Must be using the	eir positive ar	nswer for (i))
		Obtair	n 2.81	A1	[2]				
3	(i)		n integral of form $k_1 e^{\frac{1}{2}x} + k_2 x$	M1		Allow $k_1 = 4$			
			a correct $8e^{\frac{1}{2}x} + 3x$ oe	A1					
		Use lii	mits correctly to confirm 8e – 2	A1	[3]				
	(ii)	Draw	increasing curve in first quadrant	M1		If incorrect y inte	rcept used the	en M1 A0	
		curvat	more or less accurate sketch with correct ure, nt at $x = 0$ must be >0	A1	[2]	Allow if no interc	cept stated		
(iii)	State r above	nore and refer to top(s) of trapezium(s) curve	B1	[1]	Can be shown us Reference to a tra			

www.dynamicpapers.com

	Pa	age 5	Mark Schem	е		www.aynan	Syllabus	Paper]
			Cambridge International AS Level –	Octob	er/N	ovember 2016	9709	22]
				r	r	r			
4	(i)	(i) Substitute $x = -1$ and simplify		M1		Allow attempt at to a remainder Allow M1 if at leare used May equate to (x allow M1 if they	$east 2 numeric (Ax^2 + B) (Ax^2 + B)$	cal values of $Bx + C + R$	f <i>a</i>
			a -4 + a - a + 4 = 0 and conclude priately	A1	[2]	Must have a conclusion - allow 'hence shown', or made a statement of intent at th start of the question			1e
	(ii)		tute $x = 2$ and equate to -42 and attempt to	M1		May equate to (x	$(-2)(4r^2 + 1)$	Br+C mu	ist
		solve		1411		have a complete to obtain M1		/	
		Obtair	n <i>a</i> = -13	A1	[2]				
	(iii)	Divide	p(x) with their <i>a</i> at least as far as						
		$4x^{2} +$	kx	M1					
		Obtair	$1 4x^2 - 17x + 4$	A1					
			$(x+1)(4x-1)(x-4)$ or equivalent if x^2 y involved	A1	If $(x+1)(4x-1)(x-4)$ see of long division then allow				ence
		Obtair	$(x^{2}+1)(2x-1)(2x+1)(x-2)(x+2)$	A1	[4]		nen anow the		
5	(i)	Use qu deriva	uotient rule (or product rule) to find first tive	M1		Quotient: Must h numerator and (2			or
		Obtair	$\frac{\frac{4}{x}(x^2+1)-8x\ln x}{(x^2+1)^2} \text{or equivalent}$	A1		Product: Must se rule.	e an applicati	on of the ch	ain
		State	$\frac{4}{x}(x^2+1)-8x\ln x=0$ or equivalent	A1		Condone missing implied by correct		orrect use is	;
			out correct process to produce equation at ln, without any incorrect working	M1					
		Confi	$m m = e^{0.5(1+m^{-2})}$ or $x = e^{0.5(1+x^{-2})}$	A1	[5]				

				www.dynan		.com	-
Р	age 6 Mark Schem				Syllabus	Paper	_
	Cambridge International AS Level –	Octob	er/N	ovember 2016	9709	22	
(ii)	Use iterative formula correctly at least once	M1		Should not be attuined and 'recover see $m_1 = 1.6487$			
	Obtain final answer 1.895	A1					
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (1.8945, 1.8955)	A1	[3]				
(i)	Use $\cos 2\theta = 2\cos^2 \theta - 1$ appropriately twice	B1		Alternative meth $\frac{1-2\sin^2\theta}{2\cos^2\theta} = \frac{1}{2}\sin^2\theta$		or $^{2}\theta$ E	31
	Simplify to confirm $1 - \frac{1}{2}\sec^2\theta$	B1	[2]	then as for 2nd B	31		
(ii)	Use $\sec^2 \alpha = 1 + \tan^2 \alpha$	B1					
	Obtain equation $\tan^2 \alpha + 10 \tan \alpha + 25 = 0$ or equivalent	B1					
	Attempt solution of 3-term quadratic equation for $\tan \alpha$ and use correct process for finding value of α from negative value of $\tan \alpha$	M1		If quadratic is inc of attempt to solv	· · · ·		
	Obtain 1.77	A1		Allow better or in	n terms of π	$\left(\frac{1013\pi}{1800}\right)$	
			[4]				
(iii)	State or imply integrand $1 - \frac{1}{2}\sec^2\frac{1}{2}x$	B1					
	Obtain integral of form $k_1 x - k_2 \tan \frac{1}{2} x$	M1					
	Obtain correct $x - \tan \frac{1}{2}x$	A1					
	Apply limits correctly to obtain $\pi - 2$	A1	[4]				

	www.dynamicpapers.com								
Р	age 7	Mark Schem				Syllabus Pa			
		Cambridge International AS Level –	Octob	er/N	ovember 2016	9709	22		
7 (i)		prrect addition formula for either $+\frac{1}{6}\pi$) or, after diffn, $\sin(\theta + \frac{1}{6}\pi)$	B1		Condone 'missin	g brackets'			
	k ₁ sin d Divide Obtair	entiate to obtain $\frac{dy}{d\theta}$ of form $\theta + k_2 \cos \theta$ or $k \sin(\theta + \frac{1}{6}\pi)$ e attempt at $\frac{dy}{d\theta}$ by attempt at $\frac{dx}{d\theta}$ in $\frac{-\frac{3\sqrt{3}}{2}\sin\theta - \frac{3}{2}\cos\theta}{4\cos\theta}$ or equivalent ify to obtain $-\frac{3}{8}(1 + \sqrt{3}\tan\theta)$	M1 M1 A1 A1	[5]					
(ii)	Substi recipro Obtair Form (0,1+	n gradient of normal $\frac{8}{3}$ equation of normal through point	B1 M1 A1 M1 A1	[5]	soi be implied by $y =$ Must be from cor	2	3.6		