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1 Functions f and g are defined by

f : x  → 10 − 3x, x ∈ >,
g : x  → 10

3 − 2x
, x ∈ >, x ≠ 3

2
.

Solve the equation ff�x� = gf�2�. [3]

2 A curve is such that
dy

dx
= 8

�5 − 2x�2
. Given that the curve passes through �2, 7�, find the equation of

the curve. [4]

3 Relative to an origin O, the position vectors of points A and B are given by

−−→
OA = 2i − 5j − 2k and

−−→
OB = 4i − 4j + 2k.

The point C is such that
−−→
AB = −−→

BC. Find the unit vector in the direction of
−−→
OC. [4]

4 Find the term that is independent of x in the expansion of

(i)

@
x − 2

x

A6
, [2]

(ii)

@
2 + 3

x2

A @
x − 2

x

A6
. [4]

5

1

3
0

1

CB

A

Mx x

In the diagram, triangle ABC is right-angled at C and M is the mid-point of BC. It is given that

angle ABC = 1
3
0 radians and angle BAM = 1 radians. Denoting the lengths of BM andMC by x,

(i) find AM in terms of x, [3]

(ii) show that 1 = 1
6
0 − tan−1

@
1

2ï3
A
. [2]
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6

! rad

O

P
T

Qr cm

The diagram shows a circle with radius r cm and centre O. The line PT is the tangent to the circle

at P and angle POT = ! radians. The line OT meets the circle at Q.

(i) Express the perimeter of the shaded region PQT in terms of r and !. [3]

(ii) In the case where ! = 1
3
0 and r = 10, find the area of the shaded region correct to 2 significant

figures. [3]

7 (i) Prove the identity
1 + cos1
1 − cos1 − 1 − cos1

1 + cos1 � 4

sin1 tan1 . [4]

(ii) Hence solve, for 0Å < 1 < 360Å, the equation
sin 1

@
1 + cos1
1 − cos1 − 1 − cos1

1 + cos1
A
= 3. [3]

8 Three points have coordinates A �0, 7�, B �8, 3� and C �3k, k�. Find the value of the constant k for

which

(i) C lies on the line that passes through A and B, [4]

(ii) C lies on the perpendicular bisector of AB. [4]

9 A water tank holds 2000 litres when full. A small hole in the base is gradually getting bigger so that

each day a greater amount of water is lost.

(i) On the first day after filling, 10 litres of water are lost and this increases by 2 litres each day.

(a) How many litres will be lost on the 30th day after filling? [2]

(b) The tank becomes empty during the nth day after filling. Find the value of n. [3]

(ii) Assume instead that 10 litres of water are lost on the first day and that the amount of water lost

increases by 10% on each succeeding day. Find what percentage of the original 2000 litres is

left in the tank at the end of the 30th day after filling. [4]

[Questions 10 and 11 are printed on the next page.]
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10

x

y

O

M

y =
8

x
+ 2x

The diagram shows the part of the curve y = 8

x
+ 2x for x > 0, and the minimum pointM.

(i) Find expressions for
dy

dx
,
d2y

dx2
and Ó y2 dx. [5]

(ii) Find the coordinates of M and determine the coordinates and nature of the stationary point on

the part of the curve for which x < 0. [5]

(iii) Find the volume obtained when the region bounded by the curve, the x-axis and the lines x = 1

and x = 2 is rotated through 360Å about the x-axis. [2]

11 The function f is defined by f : x  → 6x − x2 − 5 for x ∈ >.
(i) Find the set of values of x for which f�x� ≤ 3. [3]

(ii) Given that the line y = mx + c is a tangent to the curve y = f�x�, show that 4c = m2 − 12m + 16.

[3]

The function g is defined by g : x  → 6x − x2 − 5 for x ≥ k, where k is a constant.

(iii) Express 6x − x2 − 5 in the form a − �x − b�2, where a and b are constants. [2]

(iv) State the smallest value of k for which g has an inverse. [1]

(v) For this value of k, find an expression for g−1�x�. [2]
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