CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	www.dynam	nicpapers	s.com		
Page 2	Mark Scheme	Syllabus	Paper		
	Cambridge International A Level – May/June 2015	9709	72		

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabu	s Paper
	Cambridge International A Level – May/June 2015	9709	72

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

www.dynamicpapers.com

	Pag	ge 4 Mark Sc		Schem	Scheme			Paper	
		Cambridge International			/el ·	– May/June 2015	9709	72	
1		Var sd =	$= 16 \times 9 + 25 \times 36 \qquad (= 1044)$ 32.3 or $6\sqrt{29}$ or $\sqrt{1044}$	B1 M1 A1		M1 for 16 (or 4 ²) & 25 (or 5 ²) used M1 for add any multiples of 9 and 36 only			
			Total	3					
2	(i)	H ₀ : 7 H ₁ : 7	a = 0.5 a > 0.5	B1	1	or Pop mean = 0.5, not just Mean = 0.5 or Pop mean (per m ²)= 0.1 Accept μ instead of λ			
	(ii)	$1 - \epsilon$ = 0.0 Clain supp	$e^{-0.5}(1 + 0.5)$ 0902 (3 sf) p 0.1 m justified or there is evidence to port claim	M1 A1 M1 A1√ [♠]	4	$1 - P(X = 0,1)$ attempted, any λ . Allow 1 end error Allow 0.09 Valid comparison NB 0.9098>0.9 recovers M1A1 M oe Accept 'Reject H ₀ ' if correctly defined No contradictions.			
			Total	5					
3		$\lambda = 5$ E(an	5×0.15 (= 0.75) nount) = 200 × 0.75 = 150	M1 A1					
		Var(Var(= 30	(weekly no of hole–in–ones) = 0.75 (amount) = $200^2 \times 0.75$ (000)	B1√ [™] M1 A1	5	Allow $200^2 \times$ their variance (with nothing added/subtracted at any stage) (SR probability table can score M1A0 srB1 if var rounds to 30,000 (2sf))			
			Total	5					
4	(i)	Con	clude flight times affected	B1		Or accept pop mean change	ed from 6.2		
		when	n in fact they have not been.	B1	2	although pop mean has not	changed from	n 6.2	
	(ii)	H ₀ : H ₀ : 5.98 $(-\sqrt{2})$ = -1 com	Pop mean (or μ) = 6.2 Pop mean (or μ) \neq 6.2 $\frac{3-6.2}{0.8}$ $\sqrt{40}$.739 (±) Accept (±)1.74 p z = 1.96 evidence that flight times affected	B1 M1 A1 B1√ [№]	4	Allow with 40 instead of $\sqrt{4}$ (CV method 5.952 or 6.227) For valid comparison or P(z < -1.739) = 0.041 > 6.2 < 6.228 and correct conclusion	40 Allow SD '9 M1 A1) 0.025 or 5.98	/Var mix 8 > 5.952 or	
	(iii)	H ₀ w Type	vas not rejected oe e II	B1* B1*de	р 2	If in (ii) H ₀ was rejected, th H ₀ rejected B1; Type I B10	en: lep		
			Total	8					

www.dynamicpapers.com

	Pag	ge 5 Mark			Scheme			Paper	
			Cambridge Internationa	I A Le	vel	– May/June 2015	9709	72	
5	(i)	$\frac{1480}{49}$ $= 18$	$\frac{90/50 \text{ or } 296}{\left(\frac{4390000}{50} - 296^{12}\right)} (= 187.755)$ 8 (3 sf)	B1 M1 A1	3	Oe			
	(ii)	$2 \times z$ $z = 1$ $\Phi(`1)$ $\alpha = 8$	$z \times \sqrt{\frac{'187.755'}{50}} = 5.45$ oe 406 or 1.405 .406') (= 0.92 or 0.9199) 84 (2 sf) allow 83.98	M1 A1 M1 A1	4	If '2 ×' omitted: $z \times \sqrt{\frac{187.5}{5}}$ $z = 2.812$ of $\Phi(2.812)$ $\alpha = 99.5$ of For complete method to fin SR use of biased var(184) states A=84.5 M1A1	$\sqrt{\frac{187.755'}{50}} = 5.45 \text{ M1}$ 2.812 or 2.810 A0 2.812') (= 0.9975) 99.5 or 99 or 100 M1 A0 d to find α (184) scores M1A1(1.4205)		
	(iii)	0.96 = 0.8	4 849 (3 sf)	M1 A1	2				
			Total	9					
6	(i)	$k \int_{0}^{15} ($	$225 - t^2)\mathrm{d}t = 1$	M1		Attempt integ $f(x)$ and $= 1$.	Ignore limits		
		$k \boxed{22}$	$25t - \frac{t^3}{3} \bigg _0^{15} = 1$	A1		Correct integration and lim	its		
		$k \times [3]{k = 1}$	$375 - 1125$ = 1 or $k \times 2250 = 1$ $\frac{1}{2250}$ AG)	A1	3	No errors seen			
	(ii)	$\frac{1}{225}$	$\frac{15}{10} \int_{10}^{15} (225 - t^2) \mathrm{d}t$	M1		Attempt integ, ignore limits			
		$(= -\frac{1}{2})$ $= -\frac{1}{22}$ $= -\frac{4}{22}$	$\frac{1}{1250} \left[225t - \frac{t^3}{3} \right]_{10}^{15}$ $\frac{1}{250} \left[2250 - (2250 - \frac{1000}{3}) \right]$ $\frac{1}{7} \text{ or } 0.148 (3 \text{ sf})$	A1 A1	3	Or $1 - \int_0^{10} 10^{10}$ Correct integration and lime Condone missing k	its.		
	(iii)	$\frac{1}{225}$	$\frac{15}{0}\int_{0}^{15}(225t-t^{3})\mathrm{d}t$	M1*		Attempt integ $xf(x)$, ignore	limits		
		$= \frac{1}{22}$ $= \frac{1}{22}$ $= \frac{43}{8}$	$\frac{1}{250} \left[\frac{225t^2}{2} - \frac{t^4}{4} \right] \frac{15}{0}$ $\frac{1}{250} \left[\frac{50625}{2} - \frac{50625}{4} \right]$ $\frac{5}{2} \text{ or } 5.625 \text{ or } 5.63 \text{ (3 sf)}$	A1 M1*c A1	lep 4	Correct integration and lim Sub correct limits into their Accept 5 mins 37 or 38 sec	its. Condone • integral s	missing k	
			Total	10)				

www.dynamicpapers.com

	Page 6		6 Mark Scheme				Syllabus	Paper
			Cambridge International A Level – May/June 2015					72
7	(i)	Pois (Act $n > \frac{1}{2}$ and $n > \frac{1}{2}$	son tually binomial with) 50 np (or λ) (= 2.1) which is < 5	B1 B1 B1	3	Allow without "binomial" Accept n large Accept p small (p < 0.1)		
	(ii)	$\lambda = 2$ $e^{-2.1}$ $= 0.8$	2.1 $\left(1+2.1+\frac{2.1^2}{2}+\frac{2.1^3}{3!}\right)$ 839 (3 sf)	B1 M1 A1	3	Attempt P(0,1,2,3) any λ al SR ₁ Ft Normal N(2.1,2.1) F 0.833 A1 SR ₂ Ft Binomial B(10500,0 binomial prob P(0,1,2,3) M	low 1 end en 31 standardis 0.0002) B1 ca 11 = 0.8386 A	or sing M1 Iculating 1
	(iii)	$P(X)$ $P(X)$ $\frac{P(X)}{P(X)}$ $P(X)$	$\geq 1) = 1 - e^{-2.1} \qquad (= 0.87754)$ $= 1,2,3) = e^{-2.1} \left(2.1 + \frac{2.1^2}{2} + \frac{2.1^3}{3!} \right)$ $(= 0.71619)$ $\frac{(= 1,2,3)}{X > 1}$ $\frac{.71619}{.87754}$ $816 (3 sf)$	M1 M1 M1 A1	4	Any λ Or '0.839' - e ^{-2.1} Any λ Allow any attempted $P(X = P(X = P($	 =1,2,3) Any = == == = =	λ ,2,3)=0.698
		Total		10				
			Total for paper	50				