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1 Solve the equation ln(2 + e−x) = 2, giving your answer correct to 2 decimal places. [4]
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The diagram shows the curve y = √(1 + 2 tan2 x) for 0 ≤ x ≤ 1

4
π.

(i) Use the trapezium rule with three intervals to estimate the value of

ã
1

4
π

0

√(1 + 2 tan2 x) dx,

giving your answer correct to 2 decimal places. [3]

(ii) The estimate found in part (i) is denoted by E. Explain, without further calculation, whether

another estimate found using the trapezium rule with six intervals would be greater than E or less

than E. [1]

3 (i) Prove the identity cosec 2θ + cot 2θ ≡ cot θ . [3]

(ii) Hence solve the equation cosec 2θ + cot 2θ = 2, for 0◦ ≤ θ ≤ 360◦. [2]

4 The equation x3 − 2x − 2 = 0 has one real root.

(i) Show by calculation that this root lies between x = 1 and x = 2. [2]

(ii) Prove that, if a sequence of values given by the iterative formula

x
n+1

= 2x3

n
+ 2

3x2
n
− 2

converges, then it converges to this root. [2]

(iii) Use this iterative formula to calculate the root correct to 2 decimal places. Give the result of each

iteration to 4 decimal places. [3]
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5 When (1 + 2x)(1 + ax)2

3 , where a is a constant, is expanded in ascending powers of x, the coefficient

of the term in x is zero.

(i) Find the value of a. [3]

(ii) When a has this value, find the term in x3 in the expansion of (1 + 2x)(1 + ax)2

3 , simplifying the

coefficient. [4]

6 The parametric equations of a curve are

x = a cos
3
t, y = a sin

3
t,

where a is a positive constant and 0 < t < 1

2
π.

(i) Express
dy

dx
in terms of t. [3]

(ii) Show that the equation of the tangent to the curve at the point with parameter t is

x sin t + y cos t = a sin t cos t. [3]

(iii) Hence show that, if this tangent meets the x-axis at X and the y-axis at Y , then the length of XY

is always equal to a. [2]

7 (i) Solve the equation ß2 + (2√
3)iß − 4 = 0, giving your answers in the form x + iy, where x and y

are real. [3]

(ii) Sketch an Argand diagram showing the points representing the roots. [1]

(iii) Find the modulus and argument of each root. [3]

(iv) Show that the origin and the points representing the roots are the vertices of an equilateral triangle.

[1]

8 (i) Express
100

x2(10 − x) in partial fractions. [4]

(ii) Given that x = 1 when t = 0, solve the differential equation

dx

dt
= 1

100
x2(10 − x),

obtaining an expression for t in terms of x. [6]

9 The line l has equation r = 4i + 2j − k + t(2i − j − 2k). It is given that l lies in the plane with equation

2x + by + cß = 1, where b and c are constants.

(i) Find the values of b and c. [6]

(ii) The point P has position vector 2j + 4k. Show that the perpendicular distance from P to l is
√

5.

[5]
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The diagram shows the curve y = x2√(1 − x2) for x ≥ 0 and its maximum point M.

(i) Find the exact value of the x-coordinate of M. [4]

(ii) Show, by means of the substitution x = sin θ , that the area A of the shaded region between the

curve and the x-axis is given by

A = 1

4
ã

1

2
π

0

sin2 2θ dθ . [3]

(iii) Hence obtain the exact value of A. [4]
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