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1 Solve the inequality |x − 2| > 3|2x + 1|. [4]

2 Solve, correct to 3 significant figures, the equation

ex + e2x = e3x. [5]
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In the diagram, ABCD is a rectangle with AB = 3a and AD = a. A circular arc, with centre A and
radius r, joins points M and N on AB and CD respectively. The angle MAN is x radians. The
perimeter of the sector AMN is equal to half the perimeter of the rectangle.

(i) Show that x satisfies the equation

sin x = 1
4
(2 + x). [3]

(ii) This equation has only one root in the interval 0 < x < 1
2
π. Use the iterative formula

xn+1 = sin−1(2 + xn

4
),

with initial value x1 = 0.8, to determine the root correct to 2 decimal places. Give the result of
each iteration to 4 decimal places. [3]

4 (i) Show that the equation tan(30◦ + θ) = 2 tan(60◦ − θ) can be written in the form

tan2 θ + (6√3) tan θ − 5 = 0. [4]
(ii) Hence, or otherwise, solve the equation

tan(30◦ + θ) = 2 tan(60◦ − θ),
for 0◦ ≤ θ ≤ 180◦. [3]
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5 The variable complex number � is given by

� = 2 cos θ + i(1 − 2 sin θ),
where θ takes all values in the interval −π < θ ≤ π.

(i) Show that |� − i| = 2, for all values of θ . Hence sketch, in an Argand diagram, the locus of the
point representing �. [3]

(ii) Prove that the real part of
1� + 2 − i

is constant for −π < θ < π. [4]

6 The equation of a curve is xy(x + y) = 2a3, where a is a non-zero constant. Show that there is only
one point on the curve at which the tangent is parallel to the x-axis, and find the coordinates of this
point. [8]

7 Let f(x) ≡ x2 + 3x + 3(x + 1)(x + 3) .

(i) Express f(x) in partial fractions. [5]

(ii) Hence show that � 3

0
f(x) dx = 3 − 1

2
ln 2. [4]
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In the diagram the tangent to a curve at a general point P with coordinates (x, y) meets the x-axis at T .
The point N on the x-axis is such that PN is perpendicular to the x-axis. The curve is such that, for all
values of x in the interval 0 < x < 1

2
π, the area of triangle PTN is equal to tan x, where x is in radians.

(i) Using the fact that the gradient of the curve at P is
PN
TN

, show that

dy
dx

= 1
2
y2 cot x. [3]

(ii) Given that y = 2 when x = 1
6
π, solve this differential equation to find the equation of the curve,

expressing y in terms of x. [6]
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The diagram shows the curve y = e
−1

2
x√(1 + 2x) and its maximum point M. The shaded region between

the curve and the axes is denoted by R.

(i) Find the x-coordinate of M. [4]

(ii) Find by integration the volume of the solid obtained when R is rotated completely about the
x-axis. Give your answer in terms of π and e. [6]

10 The points A and B have position vectors, relative to the origin O, given by

−−→
OA = i + 2j + 3k and

−−→
OB = 2i + j + 3k.

The line l has vector equation

r = (1 − 2t)i + (5 + t)j + (2 − t)k.

(i) Show that l does not intersect the line passing through A and B. [4]

(ii) The point P lies on l and is such that angle PAB is equal to 60◦. Given that the position vector
of P is (1 − 2t)i + (5 + t)j + (2 − t)k, show that 3t2 + 7t + 2 = 0. Hence find the only possible
position vector of P. [6]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of
Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2008 9709/03/M/J/08

www.dynamicpapers.com




