UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level Advanced International Certificate of Education

MARK SCHEME for the June 2004 question papers

	9709 MATHEMATICS
9709/01	Paper 1 (Pure 1), maximum raw mark 75
9709/02	Paper 2 (Pure 2), maximum raw mark 50
9709/03, 8719/03	Paper 3 (Pure 3), maximum raw mark 75
9709/04	Paper 4 (Mechanics 1), maximum raw mark 50
9709/05, 8719/05	Paper 5 (Mechanics 2), maximum raw mark 50
9709/06, 0390/06	Paper 6 (Probability and Statistics 1), maximum raw mark 50
9709/07, 8719/07	Paper 7 (Probability and Statistics 2), maximum raw mark 50

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

	maximum	minimum	mark required	for grade:
	mark available	А	В	E
Component 1	75	63	56	31
Component 2	50	37	33	18
Component 3	75	61	55	29
Component 4	50	38	34	18
Component 5	50	36	32	17
Component 6	50	38	34	19
Component 7	50	42	37	22

Grade thresholds taken for Syllabus 9709 (Mathematics) in the June 2004 examination.

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

Mark Scheme Notes

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AEF Any Equivalent Form (of answer is equally acceptable)
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - CWO Correct Working Only often written by a 'fortuitous' answer
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)
 - SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √"marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Paper 1 (Pure 1)

				www.dyr		
Page 1	Mark S A AND AS LEV			2004	Syllabus 9709	Paper
	A AND AS LEV	<u> </u>	JUNE	2004	9709	1
1. (i) $a/(1-r) = 25$ → $r = \frac{3}{4}$ (ii) $S_{10} = 64(1 - 3)$ → $S_{10} = 24$	-0.75 ¹⁰) (1-0.75)	M1 A1 M1 A1	[2] [2]	Use of correct for Correct only Use of correct for Correct only		⁰ not 0.75 ⁹
2. $\int_{0}^{1} \sqrt{3x+1} dx =$	$(3x+1)^{1.5} \div 1.5$	B1		MI for $(3x+1)^{1.5}$ ÷	-1.5	
	then 3	M1		For division by 3		
→[]at1-[]	at 0	M1		Must attempt [] a and be using an ir		
→ 16/9 – 2/9	= 14/9 or 1.56	A1	[4]	Fraction or decimation	•	
divides by c $\rightarrow \tan^2 \theta + \zeta$	3tan θ = 4	M1 A1	[2]	Knowing to divide Correct quadratic	(not nec = 0	
(ii) Solution tan	$\theta = 1 \text{ or } \tan \theta = -4$	M1		Correct solution o		: 0
$\rightarrow \theta = 45^{\circ} \phi$	or 104.0°	A1	A1 [3]	Correct only for ea	ach one.	
4. (i) Coeff of $x^3 =$	= 6C3 x 2 ³ =160	B1 B1	B1 [3]	B1 for 6C3 B1 fo B1 for 160	or 2 ³	
(ii) Term in x ² =	$= 6C2 \times 2^2 = 60$	B1	[0]	B1 for 60 (could b	e given in (i)))
reqd coeff =	1 x (i) – 3 x 60	M1		Needs to conside	r 2 terms	
→ - 20		A1	[3]	со		
5.						
0 6	a the second					
(i) Area of sect Area of triar → Shaded a	ngle = $\frac{1}{2}.10^2$.sin0.8 (35.9)	M1 M1 A1	[3]	Use of ½r ² θ with Use of ½absinC o Correct only		rig
	= 6 x 0.8 (4.8) rule) or 2 x 10sin0.4 (7.8) er = 8 + 4.8 + 7.8 = 20.6	M1 M1 A1	A1 [4]	Use of s=rθ with r Any correct metho Correct only		n (i)

www.dy	/namicpa	pers.com

		www.dynamicpapers.com						ן ר
	Page 2	Mark Scheme				Syllabus	Paper	1
		A AND AS LEV	EL – Jl	JNE	2004	9709	1	
6.	\rightarrow x ² +x-6	x (or y) completely =0 or y ² –17y+66=0 quadratic = 0 nd (–3, 11)	M1 A1 DM1 A1	[4]	Needs x or y remo Correct only (no l Equation must = 0 Everything ok.	need for $= 0$)		
			B1 √ M1 M1 A	1 [4]	For his two points Use of y-step x-s Use of $m_1m_2 = -1$ Any form – needs	step (beware	·	
7.	Gradient of Gradient of	nal y–3 = 2(x–6) (y=2x–9)	M1 A1 DM1 DM1 A1	[5]	Any attempt at dif For $-\frac{1}{2}$ Use of $m_1m_2 = -1$ Correct method for Ans given – bewa	or eqn of line	answers.	
	(ii) Vol = $\pi \int \frac{3}{x}$	$\frac{24}{x^2}dx = \pi \left[-324x^{-1}\right].$	M1 A′	1	Use of $\int y^2 dx$ for	⁻ M. correct((needs π) i	for A
	Uses value	at x=6 – value at x= 4.5	DM1		Use of 6 and 4.5			
	<i>-</i> 54 π 7	$2\pi = 18\pi$	A1	[4]	Beware fortuitous	answers (an	s given)	
8.	(i) $2h + 2r + \pi$ $\rightarrow h = 4 - r$		M1 A1	[2]	Reasonable atten correct formula fo Co in any form wit	$r \frac{1}{2}C$ or C.	4 lengths +	
	(ii) A=2rh+ ¹ ⁄ ₆ π	$r^2 \rightarrow A = r(8-2r-\pi r) + \frac{1}{2}\pi r^2$	M1		Adds restangle +	¹ /yeirele (ear	on own ol	
		$2r^2 - \frac{1}{2}\pi r^2$	A1	101	Adds rectangle + Co beware fortuito			
	(iii) dA/dr = 8 – = 0 when r	$4r - \pi r$ = 1.12 (or 8/(4+ π))	M1 DM1	[2] A1 A1 [4]	Knowing to differe Setting his dA/dr t		•	۲.
	(iv) d ² A/dr ² = – This is neg	$4 - \pi$ ative \rightarrow Maximum	M1 A1	[2]	Looks at 2 nd differ complete method. Correct deduction correct.			

F	Page 3	Mark Sche			Syllabus	Paper]
		A AND AS LEVEL -	- JUNE 20	04	9709	1	
9. <i>OA</i>	$= \begin{pmatrix} 1\\ 3\\ -1 \end{pmatrix}, \overrightarrow{OB} =$	$= \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 4 \\ 2 \\ p \end{pmatrix}, \overrightarrow{OD} = \begin{pmatrix} -1 \\ 0 \\ q \end{pmatrix}$		Condone nota Allow column	C C		out
()	\overrightarrow{IB} = b – a = 2 i Unit vector =	$-4j + 4k$ $(2i - 4j + 4k) \qquad \sqrt{(2^2 + 4^2 + 4^2)}$	M1 M1	Use of b–a, ra Dividing by the			
		(2i - 4j + 4k) = 6	A1 [3]	Co (allow – for			
	$\overrightarrow{DA.OC} = 4 +$ = 0 fo $\rightarrow p = 10$	6 – p or 90°	M1 DM1 A1 [3]	Use of x ₁ x ₂ + y Setting to 0 + a co		olve	
	$(-2)^2 + 3^2 + (q)^2 + (q+1)^2 = 3$	$(+1)^2 = 7^2$ 6 or q ² + 2q = 35	M1 A1	Correct metho Correct quadra	-		d+a
q	ן = 5 and q = ∙	-7	DM1 A1 or B1 B1 [4]	Correct metho Or B1 for each			
10. f: :	$x \mapsto x^2 - 2x$,	g: x → 2x+3					
()	x ² – 2x – 15 = End-points –3		M1 A1	Equation set to Correct end-po			
	\rightarrow x < –3 and	l x > 5	A1	Co-inequalities	s – not ≤ or	≥	
(ii)	Uses dy/dx = Minimum at x	$x = 2x-2 = 0$ or $(x-1)^2 - 1$ x = 1 or correct form	[3] M1 A1	Any valid com Correct only	plete metho	d for x value	Э
	Range of y is	s f(x) ≥ −1	A1	Correct for his	value of "x'	' – must be	≥
N	o inverse sin	ce not 1 : 1 (or equivalent)	B1	Any valid state	ement.		
(iii)	$gf(x) = 2(x^2 - x^2)$	-2x) + 3 (2x ² - 4x + 3)	[4] M1	Must be gf not	fg – for uns	simplified an	S.
	b ² - 4ac = 1	$6-24 = -8 \rightarrow -ve$	M1	Used on quad	ratic=0, eve	n if fg used.	
	ightarrow No real so	lutions.	A1 [3]	Must be using and statement	-	ect assumpt	ion
	[or gf(x)=0 —	\rightarrow f(x)=-3/2. Imposs from (ii)]					
(iv	y) y = 2x + 3	correct line on diagram	B2,1,0 [2]	3 things neede g correct,	ed –B1 if on	e missing.	
		se as mirror image in y=x i = ½ (x−3) drawn	[]	• g ⁻¹ correct	 not parall or stateme 	el to g nt re symme	etry
DM1 fo	or quadratic e	equation. Equation must be set to	0.				

Formula \rightarrow must be correct and correctly used – allow for numerical errors though in b² and –4ac. Factors \rightarrow attempt to find 2 brackets. Each bracket then solved to 0.

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Paper 2 (Pure 2)

UNIVERSITY of CAMBRIDGE International Examinations

	o 1	WWW.CJ Mark Scheme	namicpap	Paper
Pag	e 1	A AND AS LEVEL – JUNE 2004	9709	2 Paper
		A AND AG LEVEL - JONE 2004	5705	Z
	-	hms to linearise an equation		M1
Ob	tain $\frac{x}{v}$ =	$=\frac{\ln 5}{\ln 2}$ or equivalent		A1
	•	wer 2.32		A1
(i)		le given iterative formula correctly at least ONCE with $x_1 = \frac{1}{2}$	= 3	M1
		n final answer 3.142 sufficient iterations to justify its accuracy to 3 d.p.		A1 A1
(ii)	State a	any suitable equation e.g. $x = \frac{1}{5} \left(4x + \frac{306}{x^4} \right)$		B1
	Derive	the given answer α (or x) = $\sqrt[5]{306}$		B1
(i)		tute x = 3 and equate to zero answer $\alpha = -1$		M1 A1
(ii)	EITHE O [If an a	 stage, state that x = 3 is a solution R: Attempt division by (x-3) reaching a partial quotient of Obtain quadratic factor 2x² + 5x +2 Obtain solutions x = -2 and x = -½ R: Obtain solution x = -2 by trial and error Obtain solution x = -½ similarly 		B1 M1 A1 B1 B2 if it reaches
(i)	State a Use tri	wn factor of $2x^2$ + bx + c and an equation in b and/or c.] answer R = 5 igonometric formulae to find α answer α = 53.13°		B1 M1 A1
(ii)	Obtair Carry Obtair	out, or indicate need for, calculation of sin ⁻¹ (4.5/5) a answer 11.0° out correct method for the second root e.g. 180° – 64.16° a answer 62.7° and no others in the range a answers outside the given range.]	– 53.13°	M1 A1√ M1 A1√
(iii)	State I	east value is 2		В1√
(i)	Obtair Equate	derivative of the form ($e^{-x} \pm xe^{-x}$). Allow $xe^{x} \pm e^{x}$ {via quotient correct derivative of $e^{\pm x} - xe^{-x}$ and derivative to zero and solve for x answer x = 1	ent rule}	M1 A1 M1 A1
	Show	or imply correct ordinates 0, 0.367879, 0.27067		B1
(ii)	Use co	prrect formula, or equivalent, with h = 1 and three ordinate a answer 0.50 with no errors seen	es	M1 A1

	Page		ynamicpap	Paper	
	J =	A AND AS LEVEL – JUNE 2004	9709	2	
6	(i)	State that $\frac{dx}{dt} = 2 + \frac{1}{t}$ or $\frac{dy}{dt} = 1 - \frac{4}{t^2}$, or equivalent		B1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1	
		Obtain the given answer		A1	3
	(ii)	Substitute t = 1 in $\frac{dy}{dx}$ and both parametric equations		M1	
		Obtain $\frac{dy}{dx} = -1$ and coordinates (2, 5)		A1	
		State equation of tangent in any correct horizontal form e.g. x	+ y = 7	A1√	3
	(iii)	Equate $\frac{dy}{dx}$ to zero and solve for t		M1	
		Obtain answer t = 2 Obtain answer y = 4		A1 A1	
		Show by any method (but <u>not</u> via $\frac{d}{dt}(y')$) that this is a minim	um point	A1	4
7	(i)	Make relevant use of the $cos(A + B)$ formula Make relevant use of $cos2A$ and $sin2A$ formulae Obtain a correct expression in terms of $cosA$ and $sinA$ Use $sin^2A = 1 - cos^2A$ to obtain an expression in terms of cos Obtain given answer correctly	A	M1* M1* A1 M1(de A1	ep*) 5
	(ii)	Replace integrand by $\frac{1}{4}\cos 3x + \frac{3}{4}\cos x$, or equivalent		B1	
		Integrate, obtaining $\frac{1}{2}$ sin3x + $\frac{3}{2}$ sinx, or equivalent		B1 +	B1√

Integrate, obtaining	$\frac{1}{12}$ sin3x + $\frac{3}{4}$ sinx, or equivalent	B1 + B	31√
Use limits correctly Obtain given anser		M1 A1	5

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

		ww	w.dynam	icpapers	s.com	
	Page 1	Mark Scheme	Syllabus	Paper		
		A AND AS LEVEL – JUNE 2004	9709/8719	3		
1	Show corr	ect sketch for $0 \le x < \frac{1}{2}\pi$			B1	
	Show corr	ect sketch for $\frac{1}{2}\pi < x < \frac{3}{2}\pi$ or $\frac{3}{2}\pi < x \le 2\pi$			B1	
	Show con	pletely correct sketch			B1	3
	[SR: for a	graph with $y = 0$ when $x = 0$, π , 2π but otherwise of correct	shape, awar	d B1.]		
2	EITHER:	State or imply non-modular inequality $(2x+1)^2 < x^2$ or con-	rresponding	quadratic		
		equation or pair of linear equations $(2x + 1) = \pm x$			B1	
		Expand and make a reasonable solution attempt at a 3-te	rm quadratic	, or solve tw	0	
		linear equations			M1	
		Obtain critical values $x = -1$ and $x = -\frac{1}{3}$ only			A1	
		State answer $-1 < x < -\frac{1}{3}$			A1	
	OR:	Obtain the critical value $x = -1$ from a graphical method ,	or by inspect	ion, or by		
		solving a linear inequality or equation			B1	
		Obtain the critical value $x = -\frac{1}{3}$ (deduct B1 from B3 if extra	a values are	obtained)	B2	
		State answer $-1 < x < -\frac{1}{3}$			B1	4
		[Condone \leq for <; accept -0.33 for $-\frac{1}{3}$.]				
		~				
		1				

3	EITHER:	State $6y \frac{dy}{dx}$ as the derivative of $3y^2$	B1	
		State $\pm 4x \frac{dy}{dx} \pm 4y$ as the derivative of $-4xy$	B1	
		Equate attempted derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obtain answer 2	A1	
		[The M1 is conditional on at least one of the B marks being obtained. Allow any		
		combination of signs for the second B1.]		
	OR:	Obtain a correct expression for <i>y</i> in terms of <i>x</i>	B1	
		Differentiate using chain rule	M1	
		Obtain derivative in any correct form	A1	
		Substitute $x = 2$ and obtain answer 2 only	A1	4
		[The M1 is conditional on a reasonable attempt at solving the quadratic in y being ma	de.]	

			WWW	.dynam	icpapers	.com	
	Page	2	Mark Scheme S	yllabus 709/8719	Paper		
			A AND AS LEVEL – JUNE 2004 97	09/07 19	3		
4	(i)	State	e or imply $2^{-x} = \frac{1}{y}$			B1	
		Obta	ain 3-term quadratic e.g. $y^2 - y - 1 = 0$			B1	2
	(ii)	Solve	e a 3-term quadratic, obtaining 1 or 2 roots			M1	
		Obta	in answer $y = (1 + \sqrt{5})/2$, or equivalent			A1	
		Carr	y out correct method for solving an equation of the form $2^x = a$, where a	> 0, reachir	ıg	
	:	a rat	io of logarithms			M1	
		Obta	ain answer $x = 0.694$ only			A1	4
5	(i)	Make	e relevant use of formula for sin 2θ or cos 2θ			M1	
		Make	e relevant use of formula for $\cos 4\theta$			M1	
		Com	plete proof of the given result			A1	3
	(ii)	Integ	grate and obtain $\frac{1}{8}(\theta - \frac{1}{4}\sin 4\theta)$ or equivalent			B1	
			limits correctly with an integral of the form $a\theta$ + $b\sin 4\theta$, where	<i>ab</i> ≠ 0		M1	
			_				-
		Obta	in answer $\frac{1}{8}(\frac{1}{3}\pi + \frac{\sqrt{3}}{8})$, or exact equivalent			A1	3
6	Sepa	arate	variables and attempt to integrate			M1	
	Obta	in tei	rms $\frac{1}{3}\ln(y^3+1)$ and x, or equivalent		/	A1 + A1	
	Evalu	uate	a constant or use limits $x = 0$, $y = 1$ with a solution containing to	erms $k \ln($	$(y^3 + 1)$ and y	٢,	
	or eq	luiva	lent			M1	
	Obta	in an	hy correct form of solution e.g. $\frac{1}{3}\ln(y^3 + 1) = x + \frac{1}{3}\ln 2$			A1√	
	Rear	rang	e and obtain $y = (2e^{3x} - 1)^{\frac{1}{3}}$, or equivalent			A1	6
	[f.t. is	s on I	<i>k</i> ≠ 0.]				
7	()		uate cubic when $x = -1$ and $x = 0$			M1	
			fy given statement correctly			A1	2
		lit ca	alculations are not given but justification uses correct statement	ts about si	gns, award	В1.]	
	/••)	.	$2x^3 - 1$			5.4	

(ii) State
$$x = \frac{2x^3 - 1}{3x^2 + 1}$$
, or equivalent B1
Rearrange this in the form $x^3 + x + 1 = 0$ (or *vice versa*) B1 **2**

	93	Mark Scheme	Syllabu			
		A AND AS LEVEL – JUNE 2004	9709/87	19 3		
(iii)	Use the it	erative formula correctly at least once			M1	
	Obtain fin	al answer –0.68			A1	
	Show suf	ficient iterations to justify its accuracy to 2d.p., or	show there is a	a sign chan	ge in the	
	interval (-	-0.685, -0.675)			A1	
(i)	EITHER:	Solve the quadratic and use $\sqrt{-1} = i$			M1	
		Obtain roots $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ and $\frac{1}{2} - i \frac{\sqrt{3}}{2}$ or equivalen	t		A1	
	OR:	Substitute $x + iy$ and solve for x or y			M1	
		Obtain correct roots			A1	
(ii)	State that	the modulus of each root is equal to 1			B1√	
	State that	the arguments are $\frac{1}{3}\pi$ and $-\frac{1}{3}\pi$ respectively			B1√ + B1√	
	the implie	d moduli and B1 for both the implied arguments.				
(iii)	EITHER:	Verify $z^3 = -1$ for each root	l		B1 + B1	
(iii)		Verify $z^{3} = -1$ for each root State $z^{3} + 1 = (z + 1)(z^{2} - z + 1)$	I		B1	
(iii)	EITHER: OR:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement	I			
(iii)	EITHER:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$			B1 B1 B1	
(iii)	EITHER: OR:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement			B1 B1	:
	EITHER: OR: OR:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$			B1 B1 B1	
	EITHER: OR: OR: State or in	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement			B1 B1 B1 B1	:
	EITHER: OR: OR: State or in	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement mply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$			B1 B1 B1 B1	:
	EITHER: OR: OR: State or in EITHER:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement mply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$ Use any relevant method to obtain a constant			B1 B1 B1 B1 M1	
	EITHER: OR: OR: State or in EITHER:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement mply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$ Use any relevant method to obtain a constant Obtain one of the values: $A = -1$, $B = 4$ and $C =$			B1 B1 B1 B1 M1 A1	:
	EITHER: OR: OR: State or in EITHER: OR:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement mply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$ Use any relevant method to obtain a constant Obtain one of the values: $A = -1$, $B = 4$ and $C =$ Obtain the remaining two values			B1 B1 B1 B1 M1 A1 A1	:
	EITHER: OR: OR: State or in EITHER: OR:	Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement mply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$ Use any relevant method to obtain a constant Obtain one of the values: $A = -1$, $B = 4$ and $C =$ Obtain the remaining two values Obtain one value by inspection	-2		B1 B1 B1 B1 B1 A1 A1 B1 B1 B1	

	V	vww.dynan	nicpapers	s.com
Page 4	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – JUNE 2004	9709/8719	3	

- (ii) Use correct method to obtain the first two terms of the expansion of $(x-1)^{-1}$ or $(x-2)^{-1}$ or $(x+1)^{-1}$ M1
 - Obtain any correct unsimplified expansion of the partial fractions up to the terms in x^3 (deduct A1 for each incorrect expansion) $A1\sqrt{+} A1\sqrt{+} A1\sqrt{-}$ Obtain the given answer correctlyA1

5

B1

1

[Binomial coefficients involving -1, e.g. $\binom{-1}{1}$, are not sufficient for the M1 mark. The f.t. is on *A*, *B*, *C*.] [Apply a similar scheme to the alternative form of fractions in (i), awarding M1*A1 $\sqrt{A1}\sqrt{for}$ the expansions, M1(dep*) for multiplying by Bx + C, and A1 for obtaining the given answer correctly.] [In the case of an attempt to expand $(x^2 + 7x - 6)(x - 1)^{-1}(x - 2)^{-1}(x + 1)^{-1}$, give M1A1A1A1 for the expansions and A1 for multiplying out and obtaining the given answer correctly.] [Allow attempts to multiply out $(x - 1)(x - 2)(x + 1)(-3 + 2x - \frac{3}{2}x^2 + \frac{11}{4}x^3)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^3 , M1 for attempting to multiply out at least as far as terms in x^2 , A1 for a correct expansion up to terms in x^3 .] [Allow the use of Maclaurin, giving M1A1 \sqrt{for} f(0) = -3 and f'(0) = 2, A1 \sqrt{for} f "(0) = -3, A1 \sqrt{for} f "'(0) = $\frac{33}{2}$, and A1 for obtaining the given answer correctly (f.t. is on *A*, *B*, *C* if used).]

10 (i) State *x*-coordinate of *A* is 1

(ii)	Use product or quotient rule	M1
	Obtain derivative in any correct form e.g. $-\frac{2\ln x}{x^3} + \frac{1}{x} \cdot \frac{1}{x^2}$	A1
	Equate derivative to zero and solve for ln x	M1

Obtain $x = e^{\frac{1}{2}}$ or equivalent (accept 1.65)	A1	
Obtain $y = \frac{1}{2e}$ or exact equivalent not involving ln	A1	5

[SR: if the quotient rule is misused, with a 'reversed' numerator or x^2 instead of x^4 in the denominator, award M0A0 but allow the following M1A1A1.]

(iii) Attempt integration by parts, going the correct wayM1Obtain $-\frac{\ln x}{x} + \int \frac{1}{x} \cdot \frac{1}{x} dx$ or equivalentA1Obtain indefinite integral $-\frac{\ln x}{x} - \frac{1}{x}$ A1Use x-coordinate of A and e as limits, having integrated twiceM1Obtain exact answer $1 - \frac{2}{e}$, or equivalentA1[If $u = \ln x$ is used, apply an analogous scheme to the result of the substitution.]

			W	ww.dynam	icpapers.	con
Pa	age {	5	Mark Scheme A AND AS LEVEL – JUNE 2004	Syllabus 9709/8719	Paper 3	
			A AND AS LEVEL - JOINE 2004	9109/0119	5	
11 ((i) I	EITHER:	Obtain a vector in the plane e.g. $\overrightarrow{PQ} = -3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$			В
			Use scalar product to obtain a relevant equation in a	a, b, c e.g3	a + 4b + c =	0 or
			6 <i>a</i> −2 <i>b</i> + <i>c</i> = 0 or 3 <i>a</i> + 2 <i>b</i> +2 <i>c</i> = 0			Ν
			State two correct equations in a, b, c			A
			Solve simultaneous equations to obtain one ratio e.	g. a : b		Ν
			Obtain $a: b: c = 2:3:-6$ or equivalent			A
			Obtain equation $2x + 3y - 6z = 8$ or equivalent			A
			[The second M1 is also given if say <i>c</i> is given an art	oitrary value a	nd a or b is fo	ound.
			The following A1 is then given for finding the correct	t values of <i>a</i> a	nd <i>b</i> .]	
		OR:	Substitute for P, Q, R in equation of plane and state	3 equations i	n a, b, c, d	В
			Eliminate one unknown, e.g. <i>d</i> , entirely			Ν
			Obtain 2 equations in 3 unknowns			A
			Solve to obtain one ratio e.g. <i>a</i> : <i>b</i>			N
			Obtain $a: b: c = 2: 3: -6$ or equivalent			A
			Obtain equation $2x + 3y - 6z = 8$ or equivalent			A
			[The first M1 is also given if say <i>d</i> is given an arbitra	ary value and t	wo equations	s in
			two unknowns, e.g. <i>a</i> and <i>b</i> , are obtained. The follow	wing A1 is for	two correct	
			equations. Solving to obtain one unknown earns the A1 is for finding the correct values of <i>a</i> and <i>b</i> .]	e second M1 a	and the follow	ving
		OR:	Obtain a vector in the plane e.g. \overrightarrow{QR} = 6 i –2 j + k			В
			Find a second vector in the plane and form correctly	/ a 2-paramete	er equation for	or
			the plane			N
			Obtain equation in any correct form e.g. $\mathbf{r} = \lambda(-3\mathbf{i} + 2\mathbf{j})$	4 j +k) + μ(6i −2	2 j + k) + i – k	K A
			State 3 equations in <i>x</i> , <i>y</i> , <i>z</i> , λ , and μ			A
			Eliminate λ and μ			Ν
			Obtain equation $2x + 3y - 6z = 8$ or equivalent			A
		OR:	Obtain a vector in the plane e.g. $\overrightarrow{PR} = 3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$			В
			Obtain a second vector in the plane and calculate th	ne vector prod	uct of the two)
			vectors, e.g. (-3i + 4j + k)×(3i + 2j + 2k)			Ν
			Obtain 2 correct components of the product			А
			Obtain correct product e.g. 6i + 9j –18k or equivaler	nt		А
			Substitute in $2x + 3y - 6z = d$ and find d or equivaler	nt		N
			Obtain equation $2x + 3y - 6z = 8$ or equivalent			

6

Page 6	Mark Scheme Syllabus Paper	
	A AND AS LEVEL – JUNE 2004 9709/8719 3	
(ii) EITHER	State equation of SN is $\mathbf{r} = 3\mathbf{i} + 5\mathbf{j} - 6\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ or equivalent	В1√
	Express x, y, z in terms of λ e.g. (3 + 2 λ , 5 +3 λ , -6 -6 λ)	В1√
	Substitute in the equation of the plane and solve for λ	M1
	Obtain \overrightarrow{ON} = i + 2 j , or equivalent	A1
	Carry out method for finding SN	M1
	Show that <i>SN</i> = 7 correctly	A1
OR:	Letting $\overrightarrow{ON} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, obtain two equations in x, y, z by equating scalar	
	product of \overrightarrow{NS} with two of $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{RP}$ to zero B1	+ B1√
	Using the plane equation as third equation, solve for x , y , and z	M1
	Obtain \overrightarrow{ON} = i +2j, or equivalent	A1
	Carry out method for finding SN	M1
	Show that <i>SN</i> = 7 correctly	A1
OR:	Use Cartesian formula or scalar product of \overrightarrow{PS} with a normal vector to find SN	M1
	Obtain SN = 7	A1
	State a unit normal $\hat{\mathbf{n}}$ to the plane	В1√
	Use $\overrightarrow{ON} = \overrightarrow{OS} \pm 7\hat{\mathbf{n}}$	M1
	Obtain an unsimplified expression e.g. 3i + 5j –6k $\pm 7(\frac{2}{7}i + \frac{3}{7}j - \frac{6}{7}k)$	A1√
	Obtain \overrightarrow{ON} = i +2j, or equivalent, only	A1

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

UNIVERSITY of CAMBRIDGE International Examinations

					WWW.C	dynamicp	
F	Page 1	Mark Scher				Syllabus	Paper
		A AND AS LEVEL –	JUNE 2	004		9709	4
1	(i)	$F = 13 \cos \alpha$	M1		For reso	olving forces	borizontally
	(')	Frictional component is 12 N	A1	2	1011630	Jiving loices	nonzontany
	(ii)	$R = 1.1 \times 10 + 13 \sin \alpha$	M1	2	For reso	olving forces	vertically (3
	()				terms no		vortically (c
		Normal component is 16 N	A1	2			
	(iii)	Coefficient of friction is 0.75	B1 ft	1			
2		$X = 100 + 250\cos 70^{\circ}$	B1				
		$Y = 300 - 250 \sin 70^{\circ}$	B1				
		$R^2 = 185.5^2 + 65.1^2$	M1		For usin	$R^2 = X^2 +$	⊦Y ²
		<i>R</i> = 197	A1 ft			one B1 is so	
						ressions for t	
						te's X and Y	are those
						quilibrant	
		$\tan \alpha = 65.1/185.5$	M1	-		ig $\tan \alpha = Y$	
		<i>α</i> = 19.3	A1 ft	6	-	one B1 is so	
					SR for s	sin/cos mix (r + 250sin70°	max 4/6)
						$+ 250 \sin 70$ $- 250 \cos 70$	
						and 214.5)	, В1
							heme M1 M
						N and $\alpha = 3$	
			OR				
		316(.227766) or 107(.4528) or	B1		Magnitu	de of the res	sultant of
		299(.3343)				ne forces	
		71.565° or 37.2743 ° or	B1			n of the resu	ltant of two
		-51.7039 °			of the fo		
		$R^{2} = 316.2^{2} + 250^{2} - 2 \times 316.2 \times 250 \text{cos} 38.4^{\circ}$	M1			ig the cosine	rule to find
		$R^2 = 107.5^2 + 100^2 - 107.5^2 + 100^2 - 10$			R		
		2×107.5×100cos142.7°					
		$R^2 = 299.3^2 + 300^2 -$					
		2×299.3×300cos38.3°					
		<i>R</i> = 197	A1 ft		ft only if	one B1 is so	cored
		$sin(71.6 - \alpha) = 250sin38.4 \div 197$	M1		For usin	ig the sine ru	le to find α
		$sin(37.3 - \alpha) = 100sin142.7 \div 197$					
		$sin(51.7 + \alpha) = 300sin38.3 \div 197$	A 4 6				
		$\alpha = 19.3^{\circ}$	A1 ft		ft only if	one B1 is so	cored
	<i>(</i>)				1		
3	(i)	Distance AC is 70 m $7 \times 10 - 4 \times 15$	B1		Forme		
		Distance <i>AB</i> is 10 m	M1 A1	3	For usin	ng AB = AC	, - DC
	(::)			5			
	(ii)	x(m)	M1			consists of 3	
		70				line segmen ositive, zero	
						e slopes. $x(t)$	
						and the grap	
					the origi		
			A1		1 st line s	segment app	ears
					steeper	than the 3 rd	and the 3 rd
		10 45 20 t(s)				ment does n	ot terminate
		10 15 30		~	on the t-		
			A1 ft	3		of <i>t</i> (10, 15 a	
						0, 10) shown	
					scales	hout ambigu	ing norm the
						x 1out of 3 m	narks)
						2 segments	
L	L	1	1		1.51.11.31		

www.d	lynami	сра	pers.co	m
			-	

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004		4

4	(i)	KE = 0.2g(0.7)	M1		For using KE = PE lost and PE lost = <i>mgh</i>
		Kinetic energy is 1.4 J	A1	2	3
	(ii)	$R = 0.2 \times 10 \times \cos 16.3^{\circ}$	B1		1.92
		<i>F</i> = 0.288 N	B1 ft		From 0.15 <i>R</i> (may be implied by subsequent exact value 0.72, 1.36 or 0.68)
		WD = 0.72 J or $a = 1.36$ or resultant downward force = 0.272 N	B1 ft		From 2.5 <i>F</i> or from $0.2a = 0.2 \times 10 \times (7/25) - F$ (may be implied by subsequent exact value 0.68)
		KE = $1.4 - 0.72$ or KE = $\frac{1}{2} 0.2(2 \times 1.36 \times 2.5)$ or 0.272×2.5	M1		For using KE = PE lost – WD or KE = $\frac{1}{2} mv^2$ and v^2 = 2as or KE = resultant downward force × 2.5
		Kinetic energy is 0.68 J	A1 ft	5	

5	(i)	$10t^2 - 0.25t^4$ (+ <i>C</i>)	M1 DM1		For integrating <i>v</i> For including constant of integration and attempting to evaluate it
		Expression is $10t^2 - 0.25t^4 - 36$	A1	3	
	(ii)	Displacement is 60 m	A1 ft	1	Dependent on both M marks in (i); ft if there is not more than one error in <i>s</i> (<i>t</i>)
	(iii)	$(t^2 - 36)(1 - 0.25t^2) = 0$	M1		For attempting to solve $s = 0$ (depends on both method marks in (i)) or $\int_0^t v dt = 36$ (but not -36) for t^2 by factors or formula method
		Roots of quadratic are 4, 36 $t = 2, 6$	A1 A1 ft	3	ft only from 3 term quadratic in t^2

6	(i)		M1		For using Newton's 2 nd law (3 terms needed)
		DF $- 400 = 1200 \times 0.5$ 20000 = 1000 <i>v</i> Speed is 20 ms ⁻¹	A1 M1 A1	4	For using $P = Fv$
	(ii)	20000/v - 400 = 0	M1		For using $P = Fv$ and Newton's 2^{nd} law with $a = 0$ and $F = 400$
		$v_{\rm max} = 50 \ {\rm ms}^{-1}$	A1	2	AG
	(iii)	$20000 = \frac{1500000}{\Delta T}$ or	M1		For using $P = \frac{\Delta W}{\Delta T}$ or for using
		distance = 1500 000/400 = 3750 and time = 3750/50			'distance = work done/400' and 'time =distance/50'
		Time taken is 75 s	A1	2	

	Page 3	Mark Scher	no			Syllabus	Paper
	age J	A AND AS LEVEL –		2004		9709	4
		A AND AS LEVEL -	JUNE	2004		3703	4
7	(i)	25 = 30t - 5t ² → t ² - 6t + 5 = 0 → (t - 1)(t - 5) = 0 or $v^2 = 30^2 - 500; t_{up} = (20 - 0)/10$	M1		attempti	g 25 = $ut - \frac{1}{2}$ ng to solve fo ing $v^2 = u^2 - \frac{1}{2}$	or t
		$t = 1, 5 \text{ or } t_{up} = 2$ Time = 5 - 1 = 4 s or Time = 2×2 = 4s or 1 < t < 5 $s_1 = 30t - 5t^2$ and $s_2 = 10t - 5t^2$	A1 A1	3	、	, .	
	(ii)	$s_1 = 30t - 5t^2$ and $s_2 = 10t - 5t^2$	M1		For usin and <i>P</i> ₂	g <i>s</i> = <i>ut</i> – ½	gt^2 for P_1
		30 <i>t</i> – 10 <i>t</i> = 25	M1			$g s_1 = s_2 + 2$ ng to solve f	
		t = 1.25 $v_1 = 30 - 10 \times 1.25$ or $v_2 = 10 - 10 \times 1.25$	A1 M1		For usin case) or	g v = u - gt for calculation	(either
		or $v_1^2 = 30^2 - 2 \times 10(29.6875)$ or $v_2^2 = 10^2 - 2 \times 10(4.6875)$				$^{2} - 2 \times 10s_{1} \text{ o}$ ng s ₂ and su = $10^{2} - 2 \times 10^{2}$	
		Velocities 17.5ms^{-1} and -2.5ms^{-1}	A1	5			_
			OR				
	(ii)	$v_1 = 30 - 10t, v_2 = 10 - 10t$ $\Rightarrow v_1 - v_2 = 20$	M1 M1		P ₂ and e For usin	g $v = u - gt$ for eliminating t g $v^2 = u^2 - 2g$ and then $s_1 =$	gs for P_1
		$(30^{2} - v_{1}^{2}) \div 20 = (10^{2} - v_{2}^{2}) \div 20 + 25$ $v_{1} - v_{2} = 20, v_{1}^{2} - v_{2}^{2} = 300$	A1				62 . 20
		$v_1 - v_2 = 20, v_1^2 - v_2^2 = 300$	M1			ing simultan າs in <i>v</i> 1 and ນ	
		Velocities are 17.5 ms ⁻¹ and -2.5 ms ⁻¹	A1	5	•	·	-
	(iii)	$t_{up} = 3$ 3 - 1.25	B1 M1		For usin	g $t_{\rm up\ and\ above}$ =	= $t_{\rm up} - t_{\rm equal}$
		Time is 1.75 s or 1.25 < <i>t</i> < 3	A1 OR	3			
	(iii)	0 = 17.5 - 10t	M2			g 0 = u - gt	
		Time is 1.75 s or 1.25 < <i>t</i> < 3	A1			nswer found < 1 out of 3 n	
					0 = 17.5		B1 ft

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

UNIVERSITY of CAMBRIDGE International Examinations

		www.dynamicp	apers.co	m
Page 1	Mark Scheme	Syllabus	Paper	l
	A AND AS LEVEL – JUNE 2004	9709/8719	5	l
	•			

Mechanics 2

1	For taking moments about the edge of the platform	M1	
	$(75g \times 0.9 = 25g \times x + 10g \times 1.1)$ (3 term equation)		
	Two terms correct (unsimplified)	A1	
	Completely correct (unsimplified)	A1	
	Distance MC = 3.16m	A1	4

4

4

<u>NB:</u> If moments taken about other points, the force of the platform on the plank must be present at the edge of the platform for M1

2	(i)	Evaluates $\frac{2r\sin\alpha}{3\alpha} \times \cos\frac{\pi}{4}$	M1	
		Obtains given answer correctly	A1	2

taking moments about AB	M1
$ x \ 10 + \frac{1}{4}\pi \ 5^2) \overline{x} = (5 \ x \ 10) \ x \ 5 + \frac{1}{4}\pi \ 5^2(10 + \frac{20}{3\pi}) \} $	
the total area correct and the moment of the rectangle correct	
simplified)	A1
the moment of CDE correct (unsimplified)	A1
tance is 7.01 cm	A1
	$x \ 10 + \frac{1}{4}\pi \ 5^2)\overline{x} = (5 \ x \ 10) \ x \ 5 + \frac{1}{4}\pi \ 5^2(10 + \frac{20}{3\pi}) \}$ the total area correct and the moment of the rectangle correct simplified) the moment of <i>CDE</i> correct (unsimplified)

3

For applying Newton's 2nd law and using $a = v \frac{dv}{dx}$ M1

East a substantiant the substantiant and intervention		
$0.6v\frac{dv}{dx} = -\frac{3}{x^3}$	A1	

For separating the variables and integrating M1 $0.3y^2 = -\frac{3x^{-2}}{2}$ (+C)

$$0.3v^2 = -\frac{1}{(-2)}$$
(+C) A1 ft

(ft omission of minus sign in line 2 only)

For using = 0 when x = 10 M1

$$v^2 = \frac{5}{x^2} - \frac{1}{20}$$
 (aef) A1 ft

(ft wrong sign in line 4 only)

Speed is
$$\frac{\sqrt{3}}{2}$$
 ms⁻¹ (=0.866) A1 7

				WWW.(dynamicpa	apers.	com	
	Page	2	Ма	ark Scheme	Syllabus	Paper		
			A AND AS	LEVEL – JUNE 2004	9709/8719	5		
4	(i)		stance of the rod from t	he hinge is $\frac{2.4}{2.5}(0.7)$ or 0.7cos	16.26° (=0.6	72)	B1	
		-	, .	t the hinge (3 term equation)			M1	
		0.6	672F = 68 x 1.2 + 750 x	2.4			A1 ft	
		Fo	rce is 2800 N				A1	4
	(ii)	X=	= 784	(ft for 0.28 <i>F</i>)			B1 ft	
		Fo	r resolving vertically (4	term equation)			M1	
		Y =	= 1870	(ft for 0.96 <i>F</i> – 818)			A1 ft	3

<u>SR</u>: For use of 680 N for weight of the beam: (i) B1, M1, A0. In (ii) ft 680, so 3/3 possible.

5	(i)	For using EPE = $\frac{\lambda x^2}{2L}$	M1

EPE gain =
$$2\left(\frac{200x^2}{2\times 4}\right)$$
 (=50x²) A1

GPE loss = $10g (4 + x)$	B1
For using the principle of conservation of energy to form an equation	M1
containing EPE, GPE and KE terms	

$$[\frac{1}{2}10^{2} + 50x^{2} = 10g (4 + x)]$$

Given answer obtained correctly

ALTERNATIVE METHOD:

$$T = \frac{200x}{4}$$
B1

A1

5

$$100 - 2\left(\frac{200x}{4}\right) = 10v\frac{dv}{dx}$$
 M1

$$\frac{1}{2}v^2 = 10x - 5x^2$$
 (+C) A1
Use x = 0, ² = 8g M1

$$^{2} = 10(8 + 2x - x^{2})$$
 A1

(ii)For using = 0 and factorizing or using formula method for solvingM1
$$x = 4$$
 (only)A12

Paper	Syllabus	Mark Scheme	Page 3
5	9709/8719	A AND AS LEVEL – JUNE 2004	
B1	0 35°	= $VT \sin 35^\circ - 5T^2$ or $2 = 25 \tan 35^\circ - \frac{25^2 \times 2V^2 \cos^2 \pi}{2V^2 \cos^2 \pi}$	(i) 2
B1		= VTcos35°	25
	here A,B,C,D are	r obtaining V^2 or T^2 in $AV^2 = B$ or $CT^2 = D$ form v	Fo
M1		merical	nı
		25tan35° – 2)cos²35°]V² = 3125 (aef) or	[[(
		$r^2 = 25 \tan 35^\circ - 2$ (aef)]	
A1		= 17.3 or <i>T</i> = 1.76	V
B1 ft		= 1.76 or $V = 17.3$ (ft $VT = 30.519365$)	
Brit			1
) M1	onent of V for M1	r using $\dot{y} = V \sin 35^\circ - gT$ (must be comp	(ii) Fo
A1 ft	rds	$_{4}$ (= 9.94 – 17.61 = -7.67) < 0 \rightarrow moving downwa	ż
		on V and T)	
		,	
M1		r using $_{\rm M}^{2}$ = (Vcos35°) ² + \dot{y}_{M}^{2}	Fo
		$M^2 = ((14.20)^2 + (-7.67)^2)$ or	(
		r using the principle of conservation of energy	Fo
		$f_{M}(v_{M}^{2} - 17.3^{2}) = -mg \times 2$)	()
A1		$= 16.1 \mathrm{ms}^{-1}$	()
AI		- 10.11118	N

EITHER Compare 25 with
$$\frac{1}{2}R\left(\frac{1}{2}\frac{v^2\sin 70^\circ}{g}\right)$$
 M1

 $25 > 14.1 \rightarrow moving downwards$ A1

OR Compare 1.76 with time to greatest height
$$\left(\frac{V \sin 35^\circ}{g}\right)$$
 M1

$$1.76 > 0.994 \rightarrow moving downwards$$
 A1

OR
$$\frac{dy}{dx} = \tan 35^\circ - \frac{g.10}{V^2 \cos^2 35^\circ} (= -0.54)$$
 used M1

As
$$tan \phi$$
 is negative \rightarrow moving downwards A1

www.dv	ynamicpa	pers com
www.u	ynannopa	pc13.0011

			WWW	.dynamicpa	apers.cor
Page	4		Mark Scheme	Syllabus	Paper
		A AND A	AS LEVEL – JUNE 2004	9709/8719	5
(i)	Tco	os60° = 0.5g	(<i>T</i> = 10)		B1
	_		ond the state of t	v^2	
	Foi	r applying Newton's	2^{nd} law horizontally and using a	$=$ $\frac{r}{r}$	M1
		ust be a component			
	Ts	$in 60^{\circ} - \frac{0.5v^2}{1000000000000000000000000000000000000$	(for an equation in V^2)		A1
	Foi	r substituting for T			M1
	=	1.5			A1
ALT		ATIVELY: v^2			
	<i>a</i> =	$=\frac{v^2}{0.15\sin 60^\circ}$			B1
			2 nd law perpendicular to the strin	ng	M 1
	0.5	g cos30° = 0.5(<i>a</i> cos	s60°)		A1
	Foi	r substituting for a			M1
	(5c	$\cos 30^\circ = 0.5^{-2}/0.15t$	$an60^{\circ}$) (for an equation in V^2)		
	=	1.5			A1
(ii)	(a)	$T\sin 45^\circ = \frac{0.5(0.9)}{0.15\sin^2}$ Tension is 5.4 N	$\frac{9)^2}{45^{\circ}}$		B1 B1
	(b)	For resolving force	es vertically		M
		$5.4\cos 45^\circ + R = 0.$	5g		A1
		Force is 1.18 N			A1

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

Page 1 Mark Scher A AND AS LEVEL –			
1 (i) $\overline{x}_A = 139$ (138.75)	B1	For the mean	
$\sigma_A = 83.1$	B1 2	For the sd	
(ii) team B	B1	Independent mark	
smaller standard deviation	B1 dep	Need the idea of spread	
	2	SR If team A has a smaller sd then award B1only for 'teamA, smaller sd'	
2 (i) axes and labels	B1	For correct uniform scales and labels on	
points		both axes, accept Frequency, %CF, Number of people, allow axes reversed,	
		allow halves	
(3,0) (15,160) (20,320) (35,480) (60,640)	B1 B1	For 3 correct points All points correct and reasonable graph inc	
(00,040)	3	straight lines	
(ii) accept 60 – 70 for straight lines	M1	For subtracting from 640 can be implied	
40 – 70 for curve	A1	For correct answer, reasonably compatible	
	2	with graph	
3 (i)			
x 1 2 3 4 5 6	M1	For 36 in the uncancelled denominator	
P(X = x) 11/36 9/36 7/36 5/36 3/36 1/36	-	somewhere, accept decimals eg 0.305 recurring or 0.306 etc	
	A1	For 3 correct probabilities	
	A1 3	All correct	
(iii) $\mathbf{F}(\mathbf{X}) = 1 \times 11/1 + 2 \times 9/1 + 3 \times 7/1 + 3$			
(ii) E(X) = $1 \times \frac{11}{36} + 2 \times \frac{9}{36} + 3 \times \frac{7}{36} + 4 \times \frac{5}{36} + 5 \times \frac{3}{36} + 6 \times \frac{1}{36} = \frac{91}{36}$	M1	For calculation of $\sum xp$ where all probs < 1	
4× 736 + 5× 736 + 6× 736 - 7736	A1		
$z = \frac{350 - 450}{122}$	2		
+ (1) 120	M1 A1	For standardising accept 120 or $\sqrt{120}$, no c For correct <i>z</i> value, + or -, accept 0.83	
= -0.833 % small = 1 - 0.7975 = 0.2025 or	A1	For answer rounding to 0.202 or 0.203	
20.25%	3		
(ii) 0.7975÷2 = 0.39875 each	M1	For dividing their remainder by 2	
$\Phi z_2 = 0.60125$	M1dep	For adding their above two probs together or subt from 1	
z ₂ = 0.257	M1	For finding the <i>z</i> corresponding to their probability	
v = 120 0.2E7 + 4E0	M1dep	For converting to <i>x</i> from a <i>z</i> value	
$x = 120 \times 0.257 + 450$	A1	For answer, rounding to 481	

	Dama O	Mark Scheme Syllabus Paper					
	Page 2	A AND AS LEV			Syllabus Paper 2004 9709/0390 6		
		A AND AS LEV			2004 9709/0390 0		
5	(a) (i) 3 ×5×3 ₃C₁×₅ = 90	3×2 or $C_1 \times {}_3C_1 \times 2$	M1 A1	2	For multiplying $3 \times 5 \times 3$ For correct answer		
	(ii) (3×5× = 69	2) + (3×3) + (5×2×3)	M1 M1 A1	3	For summing options that show S&M,S&D,M&D $3 \times 5 \times a + 3 \times 3 \times b + 5 \times 3 \times c$ seen for integers a,b,c For correct answer		
(b) ₁₄ C₅ × 9C₅ = 252252	× ₄ C ₄ or equivalent	M1 M1 A1	3	For using combinations not all ₁₄ C For multiplying choices for two or three groups For correct answer NB 14!/5!5!4! scores M2 and A1if correct answer		
6 (i)	0.9 Win	B1		For top branches correct (0.65, 0.9, 0.1)		
	0.65 1 st in	0.1 Lose 0.6 Win	B1		For bottom branches correct (0.35, 0.8, 0.2)		
\leq	0.35 1 st out-	0.8 2 nd in 0.4 Lose	B1		For win/lose option after 2 nd in (0.6, 0.4)		
	0.2 2 nd out Lose	B1	4	For all labels including final lose at end of bottom branch			
(ii) 0.65×0.1+ = 0.247	0.35 × 0.8 × 0.4 + 0.35 × 2	M1 M1 A1	3	For evaluating 1 st in and lose seen For 1 st out 2 nd in lose, or 1 st out 2 nd out lose For correct answer		
(iii) $\frac{0.65 \times 0.1}{0.247}$		м1		For dividing their 1 st in and lose by their answer to (ii)		
	= 0.263	(= 5/19)	A1ft	2	For correct answer, ft only on 0.65×0.1/their (ii)		

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/0390	6

7 (i) $P(0) = (0.8)^{15}$ (= 0.03518) $P(1) = {}_{15}C_1 \times (0.2) \times (0.8)^{14}$ (= 0.1319) $P(2) = {}_{15}C_2 \times (0.2)^2 \times (0.8)^{13}$ (= 0.2309) $P(X \le 2) = 0.398$	B1 B1 B1 3	For correct numerical expression for P(0) For correct numerical expression for P(1) or P(2) For answer rounding to 0.398
(ii) $1 - (0.8)^n \ge 0.85$ $0.15 \ge (0.8)^n$ n = 9	M1 M1 dep A1 3	For an equality/inequality involving 0.8, <i>n</i> , 0.85 For solving attempt (could be trial and error or lg) For correct answer
(iii) $\mu = 1600 \times 0.2 = 320$, $\sigma^2 = 1600 \times 0.2 \times 0.8 = 256$ P($X \ge 290$) or P(X<350) $= 1 - \Phi\left(\frac{289.5 - 320}{\sqrt{256}}\right) = 1 - \Phi(-1.906)$ $= \Phi(1.906) = 0.972$	B1 M1 M1 A1 5	For both mean and variance correct For standardising , with or without cc, must have $$ on denom For use of continuity correction 289.5 or 290.5 For finding an area > 0.5 from their <i>z</i> For answer rounding to 0.972

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1 Mark Scheme Syllabus Paper					
A AND AS LEVEL – JUNE 2004 9709/8719 7					
•••	= 15 or <i>p</i> = 0.25 > 15 or <i>p</i> > 0.25	B1	1	For H_0 and H_1 correct	
(ii) Test s z = ± -	$\frac{21.5 - 15}{\sqrt{60 \times 0.25 \times 0.75}} = 1.938$	M1		For attempt at standardising with or without cc, must have $$ something with 60 in on the denom	
	st statistic $\frac{\frac{22}{60} - \frac{0.5}{60} - \frac{15}{60}}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$	A1		For 1.94 (1.938)	
CV z =	1.645	M1		For comparing with 1.645 or 1.96 if 2-tailed, signs consistent, or comparing areas to 5%	
In CR	Claim justified	A1ft	4	For correct answer(ft only for correct one-tail test)	
Var = (= 3.5 + 2.9 + 3.1 = 9.5 $0.3^{2} + 0.25^{2} + 0.35^{2} (=0.275)$ = 0.524	B1 M1 A1	3	9.5 as final answer For summing three squared deviations For correct answer	
	$\frac{9-9.5}{4} = -1.907$ $\frac{1}{4}$ $\frac{36-38}{4} = -1.907$	M1 M1		For standardising, no cc For $\sqrt{\frac{their \text{ var}}{4}}$ or $\sqrt{4 \times their}$ var) in denom -	
	$\sqrt{(4 \times their var)}$ 7) = 0.9717 = 0.972	A1	3	no 'mixed' methods. For correct answer	
3 (i) E(2X-3 = - 2	Y) = 2E(X) –3E(Y) = 16 – 18	M1 A1	2	For multiplying by 2 and 3 resp and subt For correct answer	
(ii) Var (2 = 19.2 = 73.2	X-3 <i>Y</i>) = 4Var (<i>X</i>) +9Var (<i>Y</i>) + 54	B1 M1 M1 A1	4	For use of var (Y) = 6 For squaring 3 and 2 For adding variances (and nothing else) For correct final answer	
4 (i) $\bar{x} = 375$ σ^{2}_{n-1}	5.3 = 8.29	B1 M1 A1	3	For correct mean (3.s.f) For legit method involving <i>n</i> -1, can be implied For correct answer	
(ii) <i>p</i> = 0.1	9 or equiv.	B1		For correct <i>p</i>	
0.19±2	$.055 \times \sqrt{\frac{0.19 \times 0.81}{200}}$	M1		For correct form $p \pm z \times \sqrt{\frac{pq}{n}}$ either/both sides	
	¥ 200	B1		For <i>z</i> = 2.054 or 2.055	

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	7

5 (i) $\frac{c-54}{3.1/\sqrt{10}} = -1.282$	B1 M1 A1	For + or – 1.282 seen For equality/inequality with their $z (\pm)$ (must have used tables), no $\sqrt{10}$ needed (c can be numerical) For correct expression (c can be numerical,
$c = 54 - 1.282 \times \frac{3.1}{\sqrt{10}} = 52.74$	A1 4	but signs must be consistent) For correct GIVEN answer. No errors seen.
(ii) $P(\bar{x} > 52.74) = 1 - \Phi\left(\frac{52.74 - 51.5}{3.1/\sqrt{10}}\right)$	B1	For identifying the outcome for a type II error
$= 1 - \Phi(1.265) = 1 - 0.8971$	M1 A1	For standardising , no $\sqrt{10}$ needed For \pm 1.265 (accept 1.26-1.27)
= 0.103 or 0.102	A1 4	For correct answer
6 (i) P(5) = $e^{-6} \times \frac{6^5}{5!} = 0.161$	M1	For an attempted Poisson P(5) calculation, any mean
	A1 2	For correct answer
(ii) $P(X \ge 2) = 1 - \{P(0) + P(1)\}$ = 1 - $e^{-1.6}(1+1.6)$	B1 M1	For μ = 1.6, evaluated in a Poisson prob For 1 – P(0) – P(1) or 1 – P(0) – P(1) – P(2)
= 0.475	A1 3	For correct answer
(iii) $(, -3^4)$	M1	For multiplying P(1) by P(4) any (consistent) mean
P(1 then 4 5) = $\frac{\left(e^{-3} \times 3\right) \times \left(e^{-3} \times \frac{3^4}{4!}\right)}{e^{-6} \times \frac{6^5}{5!}}$	M1 A1 3	For dividing by P(5) any mean For correct answer
= 0.156 or 5/32		
7 (i) $c \int_{0}^{5} t(25-t^2) dt = 1$	M1	For equating to 1 and a sensible attempt to integrate
$c \left[\frac{25t^2}{2} - \frac{t^4}{4} \right]_0^5 = 1$	A1	For correct integration and correct limits
$c\left[\frac{625}{2} - \frac{625}{4}\right] = 1 \implies c = \frac{4}{625}$	A1 3	For given answer correctly obtained
(ii) $\int_{2}^{4} ct(25-t^2) dt = \left[\frac{25ct^2}{2} - \frac{ct^4}{4}\right]_{2}^{4} = c[136] - c[46]$	M1*	For attempting to integrate $f(t)$ between 2 and 4 (or attempt 2 and 4)
$= \frac{72}{125} (0.576)$	M1*dep A1 3	For subtracting their value when t = 2 from their value when t = 4 For correct answer
⁵ Γ τ 27.3 τ 5 ⁷⁵	M1*	For attempting to integrate <i>t</i> f(<i>t</i>), no limits
(iii) $\int_{0}^{5} ct^{2}(25-t^{2}) dt = \left[\frac{4}{625} \times \frac{25t^{3}}{3} - \frac{4}{625} \times \frac{t^{5}}{5}\right]_{0}^{5}$		needed
$=\frac{8}{20}$	A1 M1*dep	For correct integrand can have <i>c</i> (or their <i>c</i>) For subtracting their value when t=0 from
3	A1 4	their value when t=5 For correct answer
<u></u>	,,, ,	