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1 (i) Show that the equation

sin(x − 60◦) − cos(30◦ − x) = 1

can be written in the form cos x = k, where k is a constant. [2]

(ii) Hence solve the equation, for 0◦ < x < 180◦. [2]

2 Find the exact value of � 1

0
xe2x dx. [4]

3 Solve the inequality ∣
∣
x − 2∣

∣
< 3 − 2x. [4]

4 The polynomial x4 − 2x3 − 2x2 + a is denoted by f(x). It is given that f(x) is divisible by x2 − 4x + 4.

(i) Find the value of a. [3]

(ii) When a has this value, show that f(x) is never negative. [4]

5 The complex number 2i is denoted by u. The complex number with modulus 1 and argument 2
3
π is

denoted by w.

(i) Find in the form x + iy, where x and y are real, the complex numbers w, uw and
u
w

. [4]

(ii) Sketch an Argand diagram showing the points U, A and B representing the complex numbers u,

uw and
u
w

respectively. [2]

(iii) Prove that triangle UAB is equilateral. [2]

6 Let f(x) = 9x2 + 4(2x + 1)(x − 2)2
.

(i) Express f(x) in partial fractions. [5]

(ii) Show that, when x is sufficiently small for x3 and higher powers to be neglected,

f(x) = 1 − x + 5x2. [4]
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7 In a chemical reaction a compound X is formed from a compound Y . The masses in grams of X and
Y present at time t seconds after the start of the reaction are x and y respectively. The sum of the
two masses is equal to 100 grams throughout the reaction. At any time, the rate of formation of X is

proportional to the mass of Y at that time. When t = 0, x = 5 and
dx
dt

= 1.9.

(i) Show that x satisfies the differential equation

dx
dt

= 0.02(100 − x). [2]

(ii) Solve this differential equation, obtaining an expression for x in terms of t. [6]

(iii) State what happens to the value of x as t becomes very large. [1]

8 The equation of a curve is y = ln x + 2
x

, where x > 0.

(i) Find the coordinates of the stationary point of the curve and determine whether it is a maximum
or a minimum point. [5]

(ii) The sequence of values given by the iterative formula

xn+1 = 2
3 − ln x

n

,

with initial value x1 = 1, converges to α . State an equation satisfied by α , and hence show that α
is the x-coordinate of a point on the curve where y = 3. [2]

(iii) Use this iterative formula to find α correct to 2 decimal places, showing the result of each
iteration. [3]

9 Two planes have equations x + 2y − 2� = 2 and 2x − 3y + 6� = 3. The planes intersect in the straight
line l.

(i) Calculate the acute angle between the two planes. [4]

(ii) Find a vector equation for the line l. [6]

10 (i) Prove the identity

cot x − cot 2x ≡ cosec 2x. [3]

(ii) Show that � 1
4
π

1
6
π

cot x dx = 1
2

ln 2. [3]

(iii) Find the exact value of � 1
4
π

1
6
π

cosec 2x dx, giving your answer in the form a ln b. [4]
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