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1 Solve the inequality ∣
∣
x − 4∣

∣
> ∣

∣
x + 1∣

∣
. [4]

2 The polynomial x4 − 9x2 − 6x − 1 is denoted by f(x).
(i) Find the value of the constant a for which

f(x) ≡ (x2 + ax + 1)(x2 − ax − 1). [3]
(ii) Hence solve the equation f(x) = 0, giving your answers in an exact form. [3]

3

The diagram shows the curve y = e2x. The shaded region R is bounded by the curve and by the lines
x = 0, y = 0 and x = p.

(i) Find, in terms of p, the area of R. [3]

(ii) Hence calculate the value of p for which the area of R is equal to 5. Give your answer correct to
2 significant figures. [3]

4 (i) Show that the equation

tan(45◦ + x) = 4 tan(45◦ − x)
can be written in the form

3 tan2 x − 10 tan x + 3 = 0. [4]
(ii) Hence solve the equation

tan(45◦ + x) = 4 tan(45◦ − x),
for 0◦ < x < 90◦. [3]
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5 (i) By sketching a suitable pair of graphs, show that the equation

ln x = 2 − x2

has exactly one root. [3]

(ii) Verify by calculation that the root lies between 1.0 and 1.4. [2]

(iii) Use the iterative formula

xn+1 = √(2 − ln xn)
to determine the root correct to 2 decimal places, showing the result of each iteration. [3]

6 The equation of a curve is y = 1
1 + tan x

.

(i) Show, by differentiation, that the gradient of the curve is always negative. [4]

(ii) Use the trapezium rule with 2 intervals to estimate the value of

�
1
4
π

0

1
1 + tan x

dx,

giving your answer correct to 2 significant figures. [3]

(iii)

The diagram shows a sketch of the curve for 0 ≤ x ≤ 1
4
π. State, with a reason, whether the

trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in
part (ii). [1]

7 The parametric equations of a curve are

x = 2θ − sin 2θ, y = 2 − cos 2θ .

(i) Show that
dy
dx

= cot θ . [5]

(ii) Find the equation of the tangent to the curve at the point where θ = 1
4
π. [3]

(iii) For the part of the curve where 0 < θ < 2π, find the coordinates of the points where the tangent
is parallel to the x-axis. [3]
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