Centre Number	Candidate Number			· ·
(Name		
· · · · · · · · · · · · · · · · · · ·	CAMBRIDGE INTE General Ce Advanced Subsidia	RNATIONAL E	XAMINATIONS ucation	
PHYSICS			9	702/02
Paper 2			October/Nover	nber 2003
Candidates ans No Additional M	wer on the Question Pa aterials are required.	per.		1 hour
READ THESE INSTRUC Write your Centre numb Write in dark blue or blac You may use a soft pend Do not use staples, pape	CTIONS FIRST er, candidate number a ck pen in the spaces pr cil for any diagrams, gra er clips, highlighters, glu	nd name on all th ovided on the Qu aphs or rough wo ue or correction fl	e work you hand in. estion Paper. ^r king. uid.	
You may lose marks if y	ou do not show your wo	orking or if you do	not use appropriate u	nits.
			Fo	r Examiner's Use
			Fc	r Examiner's Use
			Fo	r Examiner's Use
			Fo	or Examiner's Use
If you have been given a details. If any details are	label, look at the incorrect or		Fo	or Examiner's Use
If you have been given a details. If any details are missing, please fill in you	label, look at the incorrect or ir correct details		Fc	or Examiner's Use
If you have been given a details. If any details are missing, please fill in you in the space given at the	label, look at the incorrect or ir correct details top of this page.			or Examiner's Use 1 2 3 4 5 6
If you have been given a details. If any details are missing, please fill in you in the space given at the Stick your personal label provided.	label, look at the incorrect or ir correct details top of this page. here, if			or Examiner's Use 1 2 3 4 5 6 7
If you have been given a details. If any details are missing, please fill in you in the space given at the Stick your personal label provided.	label, look at the incorrect or ur correct details top of this page. here, if			or Examiner's Use 1 2 3 4 5 6 7 >tal
If you have been given a details. If any details are missing, please fill in you in the space given at the Stick your personal label provided.	label, look at the incorrect or ir correct details top of this page. here, if	onsists of 20 prin	Fo	or Examiner's Use 1 2 3 4 5 6 7 otal

Data

speed of light in free space,	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
permeability of free space,	$\mu_0 = 4\pi imes 10^{-7} \ { m H} { m m}^{-1}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \ \mathrm{F} \mathrm{m}^{-1}$
elementary charge,	$e = 1.60 \times 10^{-19} \text{ C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} {\rm kg}$
rest mass of proton,	$m_{\rm p}^{}$ = 1.67 $ imes$ 10 ⁻²⁷ kg
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant,	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

9702/2/O/N03

Formulae

uniformly accelerated motion,	$s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$
work done on/by a gas,	$W = p\Delta V$
gravitational potential,	$\phi = -\frac{Gm}{r}$
simple harmonic motion,	$a = -\hat{x}$
velocity of particle in s.h.m.,	$v = v_0 \cos t$ $v = \pm (x_0^2 - x^2)$
resistors in series,	$R = R_1 + R_2 + \dots$
resistors in parallel,	$1/R = 1/R_1 + 1/R_2 + \dots$
electric potential,	V = Q
capacitors in series,	$1/C = 1/C_1 + 1/C_2 + \dots$
capacitors in parallel,	$C = C_1 + C_2 + \dots$
energy of charged capacitor,	$W = \frac{1}{2}QV$
alternating current/voltage,	$x = x_0 \sin t$
hydrostatic pressure,	p = qgh
pressure of an ideal gas,	$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$
radioactive decay,	$x = x_0 \exp(-\ddot{I}t)$
decay constant,	$\ddot{I} = \frac{0.693}{t_{\frac{1}{2}}}$
critical density of matter in the Univers	se, $q_0 = 3H_0^2$
equation of continuity,	Av = constant
Bernoulli equation (simplified),	$\rho_1 + \frac{1}{2} q v_1^2 = \rho_2 + \frac{1}{2} q v_2^2$
Stokes' law,	$F = Ar\eta v$
Reynolds' number,	$R_{\rm e} = qv$
drag force in turbulent flow,	$F = Br^2 qv^2$

[Turn over

Answer **all** the questions in the spaces provided.

1 (a) One of the equations of motion may be written as

....

$$v^2 = u^2 + 2as.$$

- (i) Name the quantity represented by the symbol *a*.
- (ii) The quantity represented by the symbol *a* may be either positive or negative. State the significance of a negative value.

.....

[2]

For

Examiner's Use

- For Examiner's Use
- (b) A student investigates the motion of a small polystyrene sphere as it falls from rest alongside a vertical scale marked in centimetres. To do this, a number of flash photographs of the sphere are taken at 0.1 s intervals, as shown in Fig. 1.1.

The first photograph is taken at time t = 0.

By reference to Fig. 1.1,

(i) briefly explain how it can be deduced that the sphere reaches a constant speed,

.....

14/14/14/	lynamicnanere com
WWWW .U	iynaniicpapeis.com

-	
C	
n	
•	

			6		
	(ii) determine the distance that the sphere has fallen from rest during a time of				
		1.	0.7 s,		
			C	distance = cm	
		2.	1.1 s.		
				diatanaa	
				[4]	
(c)	The acc	e stu elera	udent repeats the experiment wit ation and does not reach a constant	th a lead sphere that falls with constant t speed.	
	Det sca	ermi le.	ine the number of flash photograph	ns that will be observed against the 160 cm	
	Incl	ude i	in your answer the photograph obta	ained at time $t = 0$.	
				number =[3]	

2 (a) Distinguish between the mass of a body and its weight. mass weight[3] (b) State two situations where a body of constant mass may experience a change in its apparent weight. 1. 2.

(c) Two parallel strings S_1 and S_2 are attached to a disc of diameter 12 cm, as shown in Fig. 3.1.

The disc is free to rotate about an axis normal to its plane. The axis passes through the centre C of the disc.

A lever of length 30 cm is attached to the disc. When a force F is applied at right angles to the lever at its end, equal forces are produced in S_1 and S_2 . The disc remains in equilibrium.

(i) On Fig. 3.1, show the direction of the force in each string that acts on the disc. [1]

(ii)	Fo:	www.dynamicpapers.com 9 • a force <i>F</i> of magnitude 150 N, determine the moment of force <i>F</i> about the centre of the disc,	For Examiner's Use
		moment = Nm	
	2.	the torque of the couple produced by the forces in the strings.	
	3.	torque = N m the force in $\ensuremath{S}_1.$	
		force =	

4 (a) Fig. 4.1 shows the variation with time *t* of the displacement *x* of one point in a progressive wave.

		11	www.dynamicpapers.com
3.	the frequency,		
4.	the speed.		frequency = Hz
On as t	Fig. 4.2, draw a secc hat shown.	nd wave having	speed = m s ⁻¹ [6] the same amplitude but half the frequency [1]

(ii)

(b) Light of wavelength 590 nm is incident at right angles to a diffraction grating having 5.80×10^5 lines per metre, as illustrated in Fig. 4.3.

A screen is placed parallel to and 1.50 m from the grating. Calculate

(i) the spacing, in μ m, of the lines of the grating,

spacing = µm

(ii) the angle θ to the original direction of the light at which the first order diffracted image is seen,

angle =°

(iii) the minimum length *L* of the screen so that both first order diffracted images may be viewed at the same time on the screen.

13

length = m [5]

~

5 Two large flat metal plates A and B are placed 9.0 cm apart in a vacuum, as illustrated in Fig. 5.1.

Fig. 5.1

A potential difference of 450 V is maintained between the plates by means of a battery.

- (a) (i) On Fig. 5.1, draw an arrow to indicate the direction of the electric field between plates A and B.
 - (ii) Calculate the electric field strength between A and B.

field strength = $\dots N C^{-1}$ [3]

- (b) An electron is released from rest at the surface of plate A.
 - (i) Show that the change in electric potential energy in moving from plate A to plate B is 7.2×10^{-17} J.

(ii) Determine the speed of the electron on reaching plate B.

speed = m s⁻¹ [4]

(c) On the axes of Fig. 5.2, sketch a graph to show the variation with distance *d* from plate A of the speed *v* of the electron. [1]

Fig. 5.2

density = kg m⁻³ [4]

				16	www.dyn	amicpapers.com
One	e isot	ope of iron m	nay be represent	ed by the sy	rmbol	
				⁵⁶ ₂₆ Fe.		
(a)	Sta	te, for one nu	cleus of this isot	ope,		
	(i)	the number	of protons,			
					number =	
	(ii)	the number	of neutrons.			
					number =	
						[2]
(b)	The 5.7	e nucleus of ×10 ^{−15} m.	this isotope o	f iron may	be assumed to be	a sphere of radius
	Cal	culate, for on	e such nucleus,			
	(i)	the mass,				
					mass =	ka
	(ii)	the density.			11455 –	Kg
				don	sitv –	ka m ⁻³

6

For

Examiner's Use

(c) An iron ball is found to have a density of 7900 kg m⁻³. By reference to your answer in (b)(ii), suggest what can be inferred about the structure of an atom of iron.

- 7 An electric heater is rated as 240 V, 1.2 kW and has constant resistance.
 - (a) For the heater operating at 240 V,
 - (i) show that the current in the heater is 5.0 A,

(ii) calculate its resistance.

resistance = Ω [4]

- bles as
- (b) The heater in (a) is connected to a mains supply by means of two long cables, as illustrated in Fig. 7.1.

The cables have a total resistance of 4.0Ω . The voltage of the mains supply is adjusted so that the heater operates normally at 240 V. Using your answers in **(a)**, where appropriate, calculate

(i) the potential difference across the cables,

potential difference =V

(ii) the voltage of the mains supply,

voltage = V

20

(iii) the power dissipated in the cables.

power dissipated = W [3]

(c) Using information from (b), determine the efficiency ε at which power is transferred from the supply to the heater. That is, calculate

 ε = _____

power input from supply

efficiency =[2]