Cambridge International AS & A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/22 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

			www.dynami	cpapers.	com		
Paç	ge 2		Mark SchemeSyllabusCambridge International AS/A Level – May/June 20169702			Paper 22	
				1			
1 ((a)	acc	eleration = change in velocity / time (taken) or rate of change of veloc	city	B1	[1]	
	(b)	(i)	v = 0 + at or $v = at$		C1		
			$(a = 36/19 =) 1.9 (1.8947) \text{ m s}^{-2}$		A1	[2]	
	((ii)	$s = \frac{1}{2}(u + v)t$ or $s = \frac{v^2}{2a}$ or $s = \frac{1}{2}at^2$				
			$= \frac{1}{2} \times 36 \times 19$ $= \frac{36^2}{(2 \times 1.89)}$ $= \frac{1}{2} \times 1.89 \times 19^2$				
			= 340 m (342 m/343 m/341 m)		M1	[1]	
	(i	iii)	1. $(\Delta KE =) \frac{1}{2} \times 95 \times (36)^2$		C1		
			= 62 000 (61 560) J		A1	[2]	
			2. (ΔPE =) 95 × 9.81 × 340 sin 40° or 95 × 9.81 × 218.5		C1		
			= 200000 J		A1	[2]	
	(i	iv)	work done (by frictional force) = $\Delta PE - \Delta KE$				
			work done = 200 000 – 62 000 (values from 1b(iii) 1. and 2.)		C1		
			(frictional force = 138000/340 =) 410 (406) N [420 N if full figures u	ised]	A1	[2]	
	((v)	$-ma = mg \sin 20^\circ - f$ or $ma = -mg \sin 20^\circ + f$		C1		
			$-95 \times 3.0 = 95 \times 3.36 - f$				
			f = 600 (604) N		A1	[2]	
2	(a)	p =	F/A		M1		
		use	of $m = \rho V$ and use of $V = Ah$ and use of $F = mg$		M1		
		cori	rect substitution to obtain $p = \rho g h$		A1	[3]	
	(b)	(i)	(when <i>h</i> is zero the pressure is not zero due to) <u>pressure</u> from the		D (
			air/atmosphere		B1	[1]	
	((ii)	gradient = ρg or $P - 1.0 \times 10^5 = \rho gh$		C1		
			e.g. $\rho g = 1.0 \times 10^5 / 0.75$ (= 133333)				
			$\rho = 133333/9.81$				
			= 14000 (13592) kg m ^{-3}		A1	[2]	

www.dynamicpapers.co							
P	age (3	Mark Scheme Cambridge International AS/A Level – May/June 2016	Syllabus 9702	Pap 22		
			Cambridge International AS/A Level – May/June 2016	9702			
3	(a)	Yo	ung modulus = stress/strain		B1	[1]	
	(b)	(i)	$E = (F \times l)/(A \times e)$ or $e = (F \times l)/(A \times E)$		B1		
			$e \propto 1/E$				
			or ratio $e_{\rm C}/e_{\rm S} = E_{\rm S}/E_{\rm C}$ or $(1.9 \times 10^{11})/(1.2 \times 10^{11})$ or 19/12		C1		
			(ratio =) 1.6 (1.58)		A1	[3]	
		(ii)	two straight lines from (0,0) with ${f S}$ having the steepest gradient		B1	[1]	
4	(a)) longitudinal: vibrations/oscillations (of the particles/wave) are parallel to the direction or in the same direction (of the propagation of energy)					
			nsverse: vibrations/oscillations (of the particles/wave) are perpendicudirection (of the propagation of energy)	ular to	B1	[2]	
	(b)	LH	S: intensity = power/area units: kgms ⁻² × m × s ⁻¹ × m ⁻² or kgm ²	$s^{-3} \times m^{-2}$	B1		
		RH	RHS: units: $m s^{-1} \times kg m^{-3} \times s^{-2} \times m^2$				
		LH	S and RHS both kg s ⁻³		A1	[3]	
	(c)	(i)	change/difference in the <u>observed/apparent</u> frequency when the so moving (relative to the observer)	ource is	B1	[1]	
		(ii)	wavelength increases/frequency decreases/red shift		B1	[1]	
	(d)	obs	served frequency = $vf_S/(v - v_S)$		C1		
		550	$0 = (340 \times 510)/(340 - v_{\rm S})$		C1		
		V _S =	= 25 (24.7) m s ⁻¹		A1	[3]	
5	(a)		raction: <u>spreading/diverging</u> o <u>f waves/light</u> (takes place) at (each) sli ment/gap/aperture	t/	B1		
		inte	erference: overlapping of waves (from coherent sources at each elen	nent)	B1		
		pat	h difference λ /phase difference of 360(°)/2 π (produces the first order	.)	B1	[3]	
	(b)	d s	$in\theta = n\lambda$ or $sin\theta = Nn\lambda$		C1		
		d =	$(2 \times 486 \times 10^{-9})/\sin 29.7^{\circ}$ (= 1.962 × 10 ⁻⁶)		C1		
			nber of lines = 510 (509.7) mm^{-1}		A1	[3]	
		nul	$\frac{1}{100} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$			[J]	

				www.dynamicpapers.com				
Page 4				Mark Scheme	Syllabus	Paper		
		Cambridge Internatio		ational AS/A Level – May/June 2016	9702	22	22	
6	(a)	at least six horizontal l	lines	equally spaced and arrow to the right		B1	[1]	
	(b)	charge used 2e				C1		
		gain in KE = $15 \times 1.6 \times or$	× 10 ^{-′}	$^{19} \times 10^3$ = 2 × 1.6 × 10 ⁻¹⁹ × V (p.d.across pl	lates)			
		$F = W/d = 15 \times 1.6 \times 1$	× 10 ⁻	$^{-19} imes 10^3 / 16 imes 10^{-3}$		C1		
		(hence <i>V</i> = 7500 V	or	$F = 1.5 \times 10^{-13} \text{ N}$)				
		E = V/d	or	E = F/Q		C1		
		$E = (7500/16 \times 10^{-3})$	or	$E = (1.5 \times 10^{-13} / 3.2 \times 10^{-19})$				
		$E = 4.7 \times 10^5 (468750)$	0) V m	- ⁻¹		A1	[4]	
		or						
		KE (= $\frac{1}{2}mv^2$) = 15 × 10	0 ³ × 1	1.6×10^{-19}				
		$v = [(2 \times 15 \times 10^3 \times 1.6)]$	6 × 10	(6.68×10^{-27})] ^{1/2} = $8.5 \times 10^5 \text{ m s}^{-1}$		(C1)		
		$a (= v^2/2s) = (8.5 \times 10)$	0 ⁵) ² /2	$2 \times 16 \times 10^{-3} = 2.25 \times 10^{13} \text{ m s}^{-2}$				
		$F (= 6.68 \times 10^{-27} \times 2.23)$	25 × 1	0^{-13}) = 1.5 × 10 ⁻¹³ N				
		E = F/Q				(C1)		
		Q = 2e				(C1)		

$$E = 4.7 \times 10^5 \,\mathrm{V}\,\mathrm{m}^{-1}$$
 (A1)

_			www.dynamic	papers	.com	
Page 5		5	Mark Scheme Sy		labus Pape	
			Cambridge International AS/A Level – May/June 2016	9702	22	
7	(a)	cha	arge exists only in discrete amounts		B1	[1]
	(b)	(i)	E = I(R + r) or $V = IR$		C1	
			(total resistance =) $2.7 + 0.30 + 0.25$ (= 3.25Ω)		M1	
			<i>I</i> = 9.0/(2.7 + 0.30 + 0.25) or 9.0/3.25 = 2.8 A		A1	[3]
		(ii)	$V = IR_{ext}$ = 2.77 × 3.0 or 2.8 × 3.0		C1	
			or			
			$V = E - Ir = 9.0 - 2.77 \times 0.25 \text{or} 9.0 - 2.8 \times 0.25$		(C1)	
			V = 8.3 (8.31) V or 8.4 V		A1	[2]
	(c)	(i)	I = nevA			
			$v = 2.77/(8.5 \times 10^{29} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-6})$		M1	
			= 8.1 (8.147) \times 10 ⁻⁶ m s ⁻¹ or 8.2 \times 10 ⁻⁶ m s ⁻¹		A1	[2]
		(ii)	A reduces by a factor 4 (1/4 less) or resistance <u>of Z</u> goes up by	′ 4×	M1	
			current goes down but by <u>less than</u> a factor of 4 (as total resistance does not go up by a factor of 4) so drift speed goes up		A1	[2]
8	(a)	bot	h electron and neutrino: lepton(s)		B1	
		bot	h neutron and proton: hadron(s)/baryon(s)		B1	[2]
	(b)	(i)	$^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{1}\beta + ^{0}_{0}\nu$			
			correct symbols for particles		M1	
			correct numerical values (allow no values on neutrino)		A1	[2]
		(ii)	up up down or uud \rightarrow up down down or udd		B1	[1]
		(iii)	weak (nuclear)		B1	[1]