

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/43

Paper 4 A Level Structured Questions

October/November 2017

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)	N +2 to +3 (and oxidised)	1
	Br ₂ /Br 0 to –1 (and reduced)	1
1(b)	$\begin{pmatrix} x & x & \\ x & O & \begin{pmatrix} x & \bullet & \\ x & \bullet & \end{pmatrix} & N & \begin{pmatrix} x & x & \\ & x & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & $	
	3 bonding pairs around N (in a structure involving NOBr)	1
	rest of molecule correct	1
1(c)(i)	the power to which a concentration of a reactant is raised in the rate equation	1
1(c)(ii)	using expt. 2 and 3 a = 2 or [NO] 2nd order and conc × 3 rate × 9 or $6.1 \times 10^{-2}/6.8 \times 10^{-3} = (0.09/0.03)^a$	1
	using expt. 1 and 2 b = 1 or [Br ₂] 1 st order and conc \times 2 rate \times 2 or $6.8 \times 10^{-3}/3.4 \times 10^{-3} = (0.04/0.02)^b$	1
(c)(iii)	initial rate = 0.16(32)	1
1(c)(iv)	$(0.0034 = k(0.03)^2(0.02))$ k = 188.9	1
	$mol^{-2}dm^6s^{-1}$	1
1(c)(v)	k decreases (as rate decreases)	1

Question	Answer	Marks
1(d)	m = 2 and $n = 0$	1

Question	Answer	Marks
2(a)	it/solubility decreases down the group and K_{sp} decreases	1
2(b)(i)	$MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$	1
2(b)(ii)	(white) solid appears / precipitation (of MgCO ₃)	1
	as [CO ₃ ²⁻] increases shifting equilibrium to the LHS (precipitating out MgCO ₃)	1
2(c)	solubility = $\sqrt{1.0 \times 10^{-5}}$ = 3.16 × 10 ⁻³ mol dm ⁻³	1
	solubility= $3.2 \times 10^{-3} \times 84.3 = 0.27 \mathrm{g}\mathrm{dm}^{-3}$	1
2(d)(i)	Mg ²⁺ ion is smaller than Ba ²⁺ ion or ionic radii increase down group ora	1
	(Mg ²⁺) distorts/polarises/the anion/nitrate group/nitrate ion /NO ₃ ⁽¹⁾⁻ /NO ₃ ion more easily (than Ba ²⁺) ora	1
2(d)(ii)	$Ba(NO_3)_2 \rightarrow BaO + 2NO_2 + \frac{1}{2}O_2$	1
2(d)(iii)	$BaO + H_2O \rightarrow Ba(OH)_2$	1
	$Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 + 2H_2O$	1

Question	Answer	Marks
3(a)	the potential difference between two half-cells/two electrodes (in a cell)	1
	under standard conditions of 1 atm., 298 K, (all) solutions being 1 mol dm ⁻³	1
3(b)(i)	8 marking points, any 2 points for each mark H ₂ / hydrogen correct delivery system for H ₂ Pb ²⁺ (aq) Pb electrode Pt electrode H*(aq) solution salt bridge voltmeter/V labelled	4
3(b)(ii)	more negative	1
	shifts Pb ²⁺ (+ 2e [−]) ≒ Pb equilibrium/reaction to the left	1

© UCLES 2017 Page 4 of 13

Question	Answer	Marks
3(c)(i)	3(c)(i) Q = $0.4 \times 80 \times 60$ = 1920 C and use of 96500/193000 Moles of Pb = $1920/193000 = 9.95 \times 10^{-3}$ Mass of Pb = $207.2 \times 9.95 \times 10^{-3}$ = 2.1 g	
	OR $Q = 0.4 \times 80 \times 60 = 1920 \text{C}$ and use of $1.6 \times 10^{-19} / 1.2 \times 10^{22}$ atoms Pb = 6×10^{21} ; moles of Pb = $6 \times 10^{21} / 6 \times 10^{23} = 0.01$ Mass of Pb = $207.2 \times 0.01 = 2.1 \text{g}$	
3(c)(ii)	$PbO_{2}(s) + SO_{4}^{2-}(aq) + 4H^{+} + 2e^{-} \rightarrow PbSO_{4}(s) + 2H_{2}O$	1
3(d)	reagents/PbO ₂ /H ₂ SO ₄ and used up/concentration decreases	1
	as fuel/hydrogen is being continuously supplied/fuel has not run out	1

Question	Answer	Marks			
4(a)	density is higher and melting point is higher				
	(density) due to A_r being larger and smaller atomic radii or (Co) atoms/ions heavier and smaller				
	(melting point) due to stronger attraction to cations as more delocalised electrons	1			
4(b)	(a molecule or ion) formed by a central metal atom/ion surrounded by (one or more) ligands	1			
4(c)(i)	same number and type of atoms and different structural formula	1			

© UCLES 2017 Page 5 of 13

Question			Answer		Marks
4(c)(ii)	octahedral AND 3D structure.g. NH ₃ H ₃ N////, Co Br NH ₃ Br NH ₃	re of $[Co(NH_3)_5Br]^{2+}$ $H_3N_{N_1,N_2} \stackrel{NH_3}{ }_{NM_3} H_3N_{NH_3} H_3N_{NH_3}$ $H_3N \stackrel{CO}{ }_{NH_3} H_3N_{NH_3}$	NH ₃ NH ₃ NH ₃ Br NH ₃		1
4(c)(iii)	co-ordinate/dative covalen	t			1
4(c)(iv)	+3 for both				1
4(d)	(HNO ₃) Ag ⁺ /AgNO ₃ cream	(-yellow) ppt. (of AgBr) and n	o reaction/white pp	t. for other isomer	1
	Ba(OH) ₂ /Ba ²⁺ (aq)/BaCl ₂ /	Ba(NO ₃) ₂ white ppt. (of BaSC	D ₄) and no reaction f	for other isomer	1
4(e)	(d-d) energy gap / ∆E is diff	erent			1
	absorb different waveleng	gth/frequency (of light)			1
4(f)			heterogeneous	homogeneous	2
		Fe in the Haber process	✓		
		Fe ²⁺ in the I ⁻ /S ₂ O ₈ ²⁻ reaction		√	
		NO_2 in the oxidation of SO_2		✓	
		V ₂ O ₅ in the Contact process	✓		

Question	Answer	Marks
5(a)	itrile; alkene; chloro; benzene/arene	
5(b)		1
	addition (polymerisation)	1

© UCLES 2017 Page 7 of 13

Question		Answer		Marks
5(c)	reagent	structure of product	type of organic reaction	8
	excess Br ₂ (aq)	Cl H CN CN Br Br [1]	(electrophilic) addition	
	excess hot, conc. MnO ₄ ⁻ (aq)	CI HO O CN COOH O COOH [1] + [1]	oxidation	
	excess hot, aqueous HC <i>l</i>	С <i>l</i> н с соон соон [1]	hydrolysis	
	excess H ₂ /Pt catalyst	both CH ₂ NH ₂ formed [1] both arene and alkene reduced [1]	reduction/ hydrogenation	
		structures [6]	2 correct for 1 mark total [2]	

Question	Answer	Marks
6(a)(i)	NO ₂	1
6(a)(ii)	$HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-$	1
6(a)(iii)	 any three from: Point 1: bonds/electrons are partially delocalised in T or delocalised /π system /π bonding extends over only five carbons Point 2: four π-electrons in the (delocalised system of T) or methylbenzene has (two) more π-electrons/(two) more delocalised electrons Point 3: contains a carbon that is sp³ hybridised in T or (all the) carbons are sp² hybridised in methylbenzene Point 4: one carbon has a bond angle of 109.5°/tetrahedral (in T) or (C-C) bond strengths/lengths are not all the same or not all the bond angles are 120° (in T) 	3
6(b)(i)	4-aminobenzoic acid	1
6(b)(ii)	step 1 Sn + HCl[1] concentrated/reflux/heat [1] step 2 CH ₃ COCl[1] step 3 KMnO ₄ /manganate(<u>VII</u>)/MnO ₄ ⁻ (acidified/alkaline) and heat [1] step 4 aqueous HCl and heat [1] step 5 ethanol, H ₂ SO ₄ , concentrated/reflux/heat [1]	6

© UCLES 2017 Page 9 of 13

Question		Ansv	ver			Marks	
6(c)	(benzocaine) is less (bas lone pair (on N) is less a	ic than ethylamine) AND vailable to accept a proton/H ⁺				2	
	since (lone pair on N) is on or phenyl ring is electron						
	OR ethylamine is more basic (than benzocaine) AND lone pair (on N) is more available to accept a proton/H ⁺						
	since ethyl/alkyl group is	electron-donating group					
6(d)(i)	7 peaks					•	
6(d)(ii)	CDC l_3 will produce no signal in the spectrum or CHC l_3 would produce a signal/would be detected				,		
6(d)(iii)	δ/ppm	group responsible for the peak	number of H atoms responsible for the peak	splitting pattern		4	
	1.2	CH ₍₃₎	3	triplet			
	3.5	CH ₍₂₎ O	2	quartet			
	5.5	NH_2	2	singlet (broad)			
	7.1–7.4	H attached to aromatic/benzene ring	4	multiplet			
6(d)(iv)	neighbouring/adjacent carbon atom has two protons/H (attached to it) or there is an adjacent CH ₂ (O) group					•	
6(d)(v)	peak at 5.5/NH ₂ peak will disappear and NH ₂ /protons exchange/swap with deuterium				1		

© UCLES 2017 Page 10 of 13

Question	Answer	Marks
6(e)(i)	NaNO ₂ + HC <i>l</i> or HNO ₂	1
6(e)(ii)	$\begin{array}{c c} CO_2C_2H_5 & CO_2C_2H_5 \\ \hline \\ N \\ R & N \\ S \\ \hline \\ OH \\ \end{array}$	
	structure of diazonium salt R	1
	structure of azo dye S	1

© UCLES 2017 Page 11 of 13

Question	Answer	Marks
7(a)	Fe atom= (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ 4s ²	1
	Fe^{3+} ion= $(1s^22s^22p^6)3s^23p^63d^5$	
7(b)	$([H^+]^2 = 8.9 \times 10^{-4} \times 0.25 \text{ or } 2.225 \times 10^{-4})$ $[H^+] = 0.0149$	1
	pH = -log(0.0149) = 1.83	1
7(c)(i)	(K _{stab} is) the equilibrium constant for the formation of a complex (ion) (in a solvent from its constituent ions/molecules)	1
7(c)(ii)	$[Fe(H_2O)_5F]^{2+}$ and $[Hg(H_2O)_5Cl]^+$	1
7(d)	$K_{\text{stab}} = \frac{[\text{Fe}(\text{ed})_2 \text{C}l_2^{3-}]}{[\text{Fe}(\text{H}_2\text{O})_4 \text{C}l_2^+][\text{ed}]^2}$	1
	$\mathrm{mol}^{-2}\mathrm{dm}^{6}$	1
7(e)(i)	CIMINATION OCCUPANTION OCCUPAN	3

© UCLES 2017 Page 12 of 13

Question	Answer	Marks
7(e)(ii)	any cis isomer and the trans isomer identified	1
7(e)(iii)	both correct cis isomers identified	1
7(e)(iv)	trans isomer identified	1

© UCLES 2017 Page 13 of 13