UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9701 CHEMISTRY

9701/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

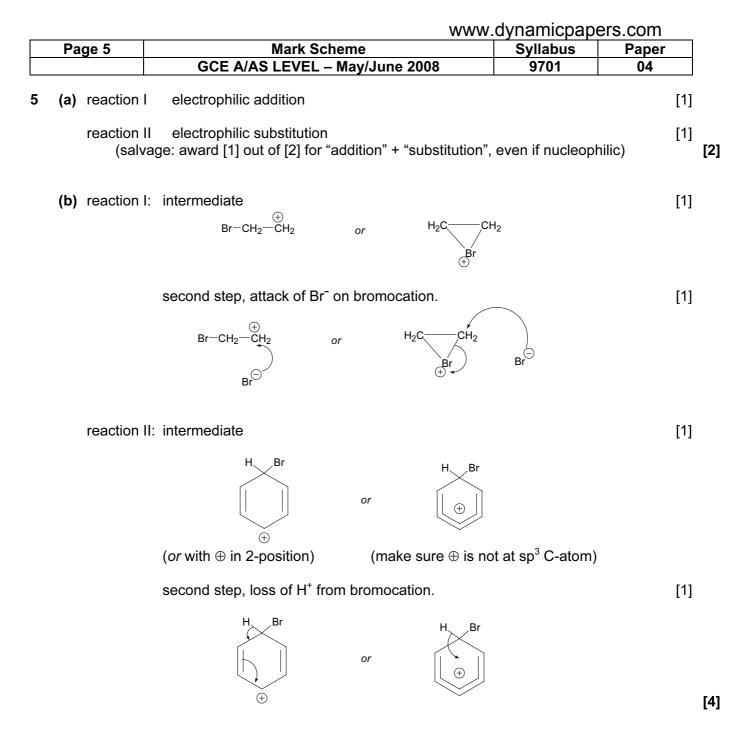
UNIVERSITY of CAMBRIDGE International Examinations

	www.dynamicpap				pers.com	
	Page 2	2	Mark Scheme	Syllabus	Paper	
			GCE A/AS LEVEL – May/June 2008	9701	04	
I	(a) (i)	A is	Cl ₂ /chlorine		[1]	
		B is	NaC <i>l</i> or HC <i>l</i> or C l^- [or words], etc.		[1]	
		C is	salt bridge or KC1/KNO ₃ , etc.		[1]	
		D is	platinum/Pt		[1]	
		E is	Fe ²⁺ + Fe ³⁺ or mixture of Fe(II) + Fe(III) salts		[1]	
			tion of standard conditions ([Cl^{-}] of 1 mol dm ⁻³ or Cl_2 = 25°C/298 K)	at 1 atmos	[1]	
	(ii)	E° =	$E_{R}^{e} - E_{L}^{e} = 0.77 - 1.36 = (-)0.59$ (V) (ignore sign)		[1]	
		•	ce R.H. electrode is negative) electrons flow (from r trode <i>or</i> anticlockwise <i>or</i> from (beaker) E to (beaker) E	• /	to the chlorine [1]	[3
	(b) (i)		= 3 ×(–167.2) + (–48.5) – (–399.5) = –150.6 or 151 (kJ mol ^{–1}) rect ans [2])		[1] [1]	
	(ii)		$^{3^{+}}$ + Cu \longrightarrow 2Fe ²⁺ + Cu ²⁺ nolecular: 2FeC l_3 + Cu \longrightarrow 2FeC l_2 + CuC l_2)		[1]	
			0.77 − 0.34 = (+) 0.43 (V) mark for −0.43V)		[1]	[4
					[Total: 12 max	. 1'
	(a) (i)		= 4 × 278 – 244 – 2 × 496 = –124 (kJ mol ^{–1}) rect ans [2])		[1] [1]	
	(ii)	due	be is bent/V-shaped/non-linear (<i>or</i> diagram) to (one) lone pair <i>and/or</i> (1) odd/unpaired electron (<i>or</i> ume electrons are on chlorine unless explicitly sta	• /		

(iii) $3KClO_3 + H_2SO_4 \longrightarrow K_2SO_4 + KClO_4 + H_2O + 2ClO_2$ [1] [5]

award no mark)

- (b) (i) coal-fired power stations; fuel in cars; car exhausts/gas emissions; other named use of a fossil fuel; contact process; cement manufacture; brick manufacture; roasting of sulphide ores; burning tyres (any 2) [1] (NOT volcanoes etc; NOT burning of natural gas) (no marks for only 1 correct source)
 - (ii) causes acid rain [1] which lower pH of lakes; leaches aluminium from soils; kills fish/plants/rainforests; dissolves/corrodes/damages buildings (any 1) [1] (NOT asthma etc – since this is not environmental) [3]


Page 3	3	www.dyna Mark Scheme S	yllabus	Paper
		GCE A/AS LEVEL – May/June 2008	9701	04
(c) (i)	SiO ₂ SnO	: simple + molecular/covalent <i>or</i> weak intermolecular forces ₂ : giant/macro + molecular/covalent ₂ : ionic/electrovalent (ignore "giant") prrect = [1], 1 correct = [0])		l 3 correct) [2]
(ii)		P_2 is stable, PbO ₂ is not <i>or</i> SnO ₂ is the more stable $P_2 \longrightarrow PbO + \frac{1}{2}O_2$		[1] [1]
(iii)	_	+ CO ₂ (≑) H ⁺ + HCO ₃ ⁻ [H ⁺][HCO ₃ ⁻]/[H ₂ O][CO ₂] <i>or</i> = [H ⁺][HCO ₃ ⁻]/[CO ₂]		[1] ecf [1]
(iv)		$D_3^- + H^+ \longrightarrow H_2CO_3 \text{ or } H_2O + CO_2 \text{ (or equation with } H_3O^+)$ $D_3^- + OH^- \longrightarrow CO_3^{2^-} + H_2O \text{ (NB NOT } H_2CO_3 + OH^- \rightarrow)$)	[1] [1]
	•	rds can substitute for one of the equations but not be priptions are given, in the absence of at least one correct)		
			[Total: 16 max
an	gles (a	ral diagram (either dashed+wedge, or similar representation all) 109° – 110°	ו)	[1] [1]
	ward [C	0] for part (a) if an angle of 90° or 180° is mentioned)		
(all due	latility low b. _l e to gr	D] for part (a) if an angle of 90° or 180° is mentioned) decreases <i>or</i> boiling points increase pt. CCl ₄ > SiCl ₄ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces <i>or</i> due to more e of "ions" negates this mark)	electrons	[1] [1]
(all due (me	latility low b.; e to gr ention Pb ⁴⁺ a va (hen	decreases <i>or</i> boiling points increase pt. $CCl_4 > SiCl_4$ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces <i>or</i> due to more of of "ions" negates this mark) /Pb ²⁺ : $E^{\circ} = +1.69V$, Sn^{4+}/Sn^{2+} : $E^{\circ} = +0.15V$, lid comment about relative redox power <i>or</i> stability, e.g.: ice) Sn^{2+} easily oxidised <i>or</i> Sn^{4+} is more stable than Sn^{2+} <i>or</i>		
(all due (me	latility low b.j e to gr ention Pb ⁴⁺ a va (hen Pb ⁴⁺	decreases <i>or</i> boiling points increase pt. $CCl_4 > SiCl_4$ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces <i>or</i> due to more of of "ions" negates this mark) $P/Pb^{2+}: E^{\circ} = +1.69V, Sn^{4+}/Sn^{2+}: E^{\circ} = +0.15V,$ lid comment about relative redox power <i>or</i> stability, e.g.:		[1]
(all dua (m.	latility low b.j e to gr ention Pb ⁴⁺ a val (hen Pb ⁴⁺ +2 o Sn ²⁺ Pb ⁴⁺	decreases <i>or</i> boiling points increase pt. $CCl_4 > SiCl_4$ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces <i>or</i> due to more of of "ions" negates this mark) $P/Pb^{2+}: E^{\circ} = +1.69V, Sn^{4+}/Sn^{2+}: E^{\circ} = +0.15V,$ lid comment about relative redox power <i>or</i> stability, e.g.: lice) Sn^{2+} easily oxidised <i>or</i> Sn^{4+} is more stable than Sn^{2+} or is easily reduced <i>or</i> Pb^{2+} is more stable than Pb^{4+} or		[1] [both] [1]
(all dua (m (c) (i) (ii)	latility low b.j e to gr ention Pb ⁴⁺ a val (hen Pb ⁴⁺ +2 o Sn ²⁺ Pb ⁴⁺ (N.B for S for S	decreases <i>or</i> boiling points increase pt. $CC_{l_4} > SiC_{l_4}$ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces <i>or</i> due to more of of "ions" negates this mark) /Pb ²⁺ : $E^{\circ} = +1.69V$, Sn^{4+}/Sn^{2+} : $E^{\circ} = +0.15V$, lid comment about relative redox power <i>or</i> stability, e.g.: ice) Sn^{2+} easily oxidised <i>or</i> Sn^{4+} is more stable than Sn^{2+} <i>or</i> is easily reduced <i>or</i> Pb^{2+} is more stable than Pb^{4+} <i>or</i> oxidation state more stable down the group $f + I_2 \longrightarrow Sn^{4+} + 2I^{-}$ $f + SO_2 + 2H_2O \longrightarrow 4H^{+} + SO_4^{2-} + Pb^{2+}$		[1] [both] [1] [1] [1] [1] [1]
(all dua (m (c) (i) (ii)	latility low b.j e to gr ention Pb ⁴⁺ a val (hen Pb ⁴⁺ +2 o Sn ²⁺ Pb ⁴⁺ (N.B for S for S (allo Yes:	decreases <i>or</i> boiling points increase pt. $CCl_4 > SiCl_4$ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces <i>or</i> due to more of of "ions" negates this mark) /Pb ²⁺ : $E^e = +1.69V$, Sn^{4+}/Sn^{2+} : $E^e = +0.15V$, lid comment about relative redox power <i>or</i> stability, e.g.: lice) Sn^{2+} easily oxidised <i>or</i> Sn^{4+} is more stable than Sn^{2+} <i>or</i> is easily reduced <i>or</i> Pb^{2+} is more stable than Pb^{4+} <i>or</i> oxidation state more stable down the group $f + I_2 \longrightarrow Sn^{4+} + 2I^-$ $f + SO_2 + 2H_2O \longrightarrow 4H^+ + SO_4^{2-} + Pb^{2+}$ g . no marks in (ii) for E^e values) Si: $\Delta H = 244 - 2(359) = -474$ (kJ mol ⁻¹) Sn: $\Delta H = 244 - 2(315) = -386$ (kJ mol ⁻¹)	962 & –874 exothermic	[1] [both] [1] [1] [1] [1] [1]

www.dynamicpapers.com						
Pa	age 4	1	Mark Scheme	Syllabus	Paper	
			GCE A/AS LEVEL – May/June 2008	9701	04	
(a)	est	er			[1]	[1
(b)	rea	iction I	acid/H ⁺ /HC1/H ₂ SO ₄ <u>or</u> alkali/OH ⁻ /NaOH (followed heat/reflux and aqueous (allow H ₃ O ⁺ to equal H "dil" means aq (but NOT H ₂ SO ₄) also allow aqueo (for heat: allow T \geq 80°C; not "warm")	H [∔] + aq, also as	[1] sume "conc" <i>or</i> [1]	
	rea	iction I	l: methanol/CH ₃ OH heat with conc. H ₂ SO ₄ /H ₃ PO ₄ <i>or</i> HC <i>l</i> (g) [NOT cor	nc HCI]	[1] [1]	[4
(c)	(i)	BrCH	I ₂ -CHBr-CH ₂ Br		[1]	
	(ii)	HO ₂ C	C-CO-CO ₂ H		[1]	[2
(d)	∴ է (co	500kg rrect a	iglyceride produces 3 × 298 = 894g of biodiesel produces 500 × 894/890 = 502 kg biodiesel ns [2]) 05kg <i>or</i> 167kg is worth [1]: 333kg is worth [0])		[1] ecf [1]	[;
(e)	(i)		$_{19}CO_2CH_3 + 27.5 O_2 \longrightarrow 19CO_2 + 19H_2O_{19}H_{38}O_2)$		[1]	
	(ii)	(–1 fc	44 × 19/298 = 28.(05)/28.1 kg or each error) e ecf values: n = 18 ⇒ 26.6kg n = 17 ⇒ 25.1kg (allow [2] for each) n = 16 ⇒ 23.6kg		ecf from equ [2]	[:
(f)		 (save second s	of the following. ving) diminishing resources nomic argument (NOT just "cheaper") – e.g. oil ensive as it runs out to CO_2 cycle (e.g. no net increase in CO_2 , i.e. " ming (due to a smaller carbon "footprint") pwablo/sustainable			

- renewable/sustainable
- the effect of biofuel cultivation on world food prices

[1] **[1]**

[Total: 13]

(c) Delocalised ring of electrons (in benzene) is stable, (so is re-formed in second step in benzene.)
or electrons in the other σ bend are localised/more available for reaction with electrophiles.

or electrons in the ethene π bond are localised/more available for reaction with electrophiles

[1] **[1]**

[Total: 7]

Page 6	Mark Scheme		Syllabus	Paper
	GCE A/AS LEVEL – May/J	une 2008	9701	04
	CH₃	CO ₂ H		
	Br			
	Α	Br B		
CO ₂	H CO ₂ H		ÇO ₂ H	
			$\left[\left(\begin{array}{c} \\ \end{array}\right)\right]$	
		NO ₂		
С	D	2	E	2

5 x [1]

[deduct [1] mark if ring circle omitted more than once] [allow ecf for **E** from structure of **D**] [allow ecf for **B** from structure of **A**] [allow $-CO_2^-$ for **E**]

[5]

```
[Total: 5]
```

7

polymer	addition/condensation?	formulae of monomers
1	condensation	HO ₂ C-CO ₂ H <i>or</i> C <i>1</i> CO-COC1 NH ₂ -CH ₂ -CH ₂ -NH ₂
2	condensation	HO-CH ₂ -CH(C ₂ H ₅)-CO ₂ H HO-CH ₂ -CH(CH ₃)-CO ₂ H
3	addition	$CH_2=CH-CH_3\\CH_2=CH-CONH_2\\CH_2=CH-C_6H_5$
	∩ [2] (2 correct: [1])	↑ [6] (6 correct: [5]) etc

(2 correct: [1])

(C=C bonds not needed, but penalise –[1] if C-C drawn instead of C=C) (if more than 7 formulae drawn, then penalise –[1] for each formula in excess of 7)

[8]

[Total: 8]

			.dynamicpape	ers.com
Pa	ge 7	Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2008	9701	04
(a)	primary:	covalent (ignore amide, peptide etc) diagram showing peptide bond: (-CHR-)CONH(-C	CHR-)	[1] [1]
	secondar	y: hydrogen bonds (NOT "between side chains") diagram showing N-H···O = C		[1] [1]
	tertiary:	 two of the following: hydrogen bonds (diag. must show H-bonds β-pleated sheet – e.g. ser-ser) electrostatic/ionic attraction, van der Waals'/hydrophobic forces/bonds, (covalent) disulphide (links/bridges) 	other than thos	e in α-helix <i>or</i> [1] + [1]
		suitable diagram of one of the above (for disulphide: S-S not S=S or SH-SH)		[1]
(b)	any poss or not), a	ly-ala-gly-arg-val-lys i ble sequence with more than 8 residues, that "uses nd that starts with <i>met</i> and ends with <i>lys</i> is worth [1] n ence that does not start with <i>met</i> or end with <i>lys</i> gets	nark	[2] s (overlapping
(c)	candidate by amino these inc (only allo then awa • a dea	his is not about DNA! es should describe TWO potential effects on tertiary o acid sidechains ude: disruption of H-bonding disruption of disulphide bridges disruption of electrostatic/ionic attraction disruption of van der Waals' forces w effects on the secondary structure if proline is spec rd [1] mark each for two of the following bullet points: scription of the amino acids involved in the above, (<i>or</i> rd [1] mark for each example)	ifically mentioned	d) 2 x [1]
	a desunfolinact	scription of an <i>effect</i> of interchanging amino acids, sudding of tertiary structure/different folding/different sha ivity of an enzyme <i>or</i> changing the active site ing of a protein to become less soluble/coagulate (e.g	pe (NOT denatur	red) 2 x [1]

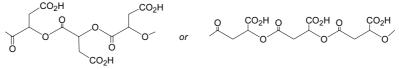
[Total: 13 max 12]

	www.dynamicpapers.com				
Page 8	Mark Scheme	Syllabus	Paper		
	GCE A/AS LEVEL – May/June 2008	9701	04		
(i) any two of: molecular mass/size/M_r/shape (overall electrical) charge (on the species) voltage/size/P.D. (of applied electric field) (salvage: if just "mass & charge" is mentioned, with no award [1]) 	reference to specie	[1] + [1] es or molecule,		
() () {	CH ₃ COCH ₃ would show a single peak/no splitting since all the Hs are in the san or a peak at δ = 2.1 due to CH ₃ CO group	ne chemical enviror	nment [1]		
e	CH ₃ CH ₂ CHO would show 3 (sets of) peaks since environments for there would be a peak at $\delta = 9.5 - 10.0$ due to the -0		ifferent proton		
	or a peak at δ = 0.9 due to CH $_3$ or a peak at δ 1.3 due to CH $_2$		[1]		
	reasons needed for the marks. Salvage: if reasons a that propanone will have one peak and propanal three,	-			
(ii) (different fragments:				
·	 CH₃COCH₃ would form fewer fragments (must be st 	tated in words)			
·	 CH₃COCH₃ would form a fragment of CH₃CO⁺ or at 	(m/e) 43			
·	 CH₃CH₂CHO would form a fragment of CH₃CH₂⁺ or 	CHO⁺ at (m/e) 29			
(CH₃CH₂CHO would form a fragment of CH₃CH₂CO⁺ 	<i>or</i> at (m/e) 57			
[charges on fragments not required for mark]	6	any 3 points [3]		
(c) (i) p	peaks at (m/e) 79 and 81 <i>or</i> at (m/e) 94 and 96		[1]		
	n chlorine the M and M+2 peaks are the ratio 3:1 whereas in bromine they are approx. 1:1		[1] [1]		
			[Total: 10 max		

	www.uynamicpapers.com		
Page 9	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9701	04

10 (a) any two of the following:

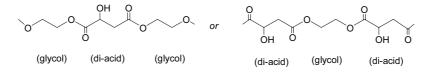
- to speed delivery (of drug to target organ), i.e. faster response
- to avoid the drug being hydrolysed/reacted/decomposed (NOT digested) in the stomach
- to allow a smaller dose to be used or greater accuracy of dosage
- patient does not have to be conscious
- (b) (i) spheres with a diameter of the order of nanometres/in the nanometre range/between 10 & 500 nm [1]
 - (ii) it is (highly) acidic *or* low pH *or* contains HC*l* (NOT contains enzymes) [1]
 - (iii) use hydrogels: of different (wall) thickness/strength (to release drug over time) of different chemical composition (for different breakdown times) incorporating pores/holes (in their walls)
 (any two) [1] + [1]

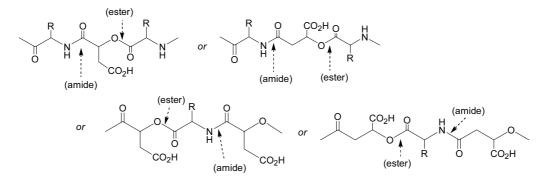

[4]

2 × [1] [2]

(c) for the homopolymer, either using the amino acid the minimum is:

-CO-CHR-NH-CO-CHR-NH-


or using the hydroxyacid the minimum is:


(-[1] for each error) [2]

anara aa

for the **heteropolymer**, *either* using the glycol compound and the di-acid the minimum is:

or using the amino acid and the di-acid, the minimum is:

(A heteropolymer incorporating all three monomers can also be drawn. This should include an ester linkage between the glycol and one of the CO_2H groups, and an amide linkage between the aminoacid and another CO_2H group. Deduct [1] mark from the whole of section (c) if complete compounds are shown rather than sections of chains. Allow 4-monomer sections instead of 3. Allow [2] marks for a polymer section even if **one** end is incomplete (e.g. is lacking an oxygen atom), but if **both** ends are incomplete deduct [1]) (-[1] for each error) [2] [4]

[Total: 10 max 9]