UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:				
	mark available	А	В	Е		
Component 4	60	45	40	22		

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY Paper 4 (Structured Questions A2 Core)

Pa	age 1		Mark Scheme	lamicpape Syllabus	Paper
			A LEVEL – JUNE 2005	9701	4
1	(a)	(i)	Ammeter/galvanometer		[1]
			Clock/watch/timer (or rheostat) (For items above 2 in number, e.g. voltmeter, penal	lise [1])	[1]
		(ii)	Diagram to show ammeter (allow symbol) in circuit, complete circuit with ⊖ terminal of power pack conr		
			electrode		[1]
		(iii)	Volume/amount of hydrogen/gas		[1]
			Time		[1]
			Current/amps/ammeter reading (ignore extra measurements)		[1]
				Part	(a): [7]
	(b)	(i)	F = L x e		[1]
		(ii)	L = 9.63 x $10^4/1.6 \times 10^{-19}$ = 6.02 x 10^{23} (must show	working)	[1]
			Allow 6.0 but not 6 or 6.01	Part	(b): [2]
				То	tal: [9]
2	(a)		The power/index/exponent to which a concentrat a rate equation	t ion term is r	aised in
			or ^a in rate = k [A] ^a (k is needed – or can use rate α [[A] ^a)	[1]
				Part	(a): [1]
	(b)	(i)	1 st order w.r.t. propanone		[1]
			Zero order w.r.t. H ⁺ ions		[1]
			1 st order w.r.t. CN⁻ ions		[1]
		(ii)	Rate = k [propanone][CN ⁻] (e.c.f	f. from (i))	[1]
		(iii)	Mechanism B (or A – see grid below), with the first see grid below) step being the slow step,	(or second -	- [1]
			(since H ⁺ does not appear in rate equation) it must after the slow step or [H ⁺] is not involved in slow ste		[1]
			Grid for e.c.f. in first mark of (iii)		
			Deductions in (i) or (ii) E.C.F. deduction	ons in (iii)	

Deduct	ions in (i) or	(ii)	E.C.F. deductions in (iii)		
[Propanone] [CN ⁻]		[H⁺]	Mechanism	Slow step	
1	1	0	В	1 st	
1	0	1	A	1 st	
1 1		1	A or B	2 nd	
Å	Any other		No e.c.f. mark can be awarded		

Part (b): [6]

Paper	Syllabus	www.dyn Mark Scheme					
4	9701	A LEVEL – JUNE 2005					
[1]		It is an endothermic reaction, or taking in heat	(i)	(a)	(a)		
[1]		It has a high activation energy/E _a					
ergy [1]	eds less en	MgCO ₃ will decompose at a lower temperature	(ii)				
ity [1]	charge dens	Mg ²⁺ is a smaller (ion) than Ca ²⁺ or Mg ²⁺ has hi					
[1]	sily	So polarises/distorts the anion CO ₃ ²⁻ ion more e [<i>or</i> LE(MgO) > LE(CaO)]					
t (a): [5]	Par						
[1]		∆H = 82 – 178 = -96 (kJ mol ⁻¹)		(b)			
: (b): [1]	Part						
		$[CaMg(CO_3)_2 \longrightarrow CaO + MgO + 2CO_2]$		(c)			
[1]		M _r (CaMg(CO ₃) ₂) = 40.1 + 24.3 + 24 + 96 = 184					
		M _r (2CO ₂) = 2 x 44 = 88					
[1]	c.f. in 184.4)	∴% loss in mass = 100 x $\frac{88}{184.4}$ = 47.7% (
t (c): [2]	Der	Allow 48%. Also allow 48.8% if $M_r = 184$					

Total: [8]

Doc	<u>~ 2</u>		www.dynamicpap Mark Scheme Syllabus	
Page	es		A LEVEL – JUNE 2005 9701	Paper 4
	I			
Ļ	(a)	(i)	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁶ 4s² or [Ar] 3d ⁶ 4s²	[1]
		(ii)	Coloured compounds/ions/solutions/ppts; paramagnetic; varia oxidation state/valency/more than one ion; dense metals; high melting point metals; are catalysts; form complexes (ANY 2)	
			Par	t (a): [3]
	(b)	(i)	$MnO_{4}^{-} + 8H^{+} + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$	[1]
			E^e = 1.52 – 0.77 = 0.75V (allow e.c.f. 0.90V for MnO_2	[1]
		(ii)	MnO ₄ ⁻ is purple/ highly coloured	[1]
			End point is first (permanent) pink colour or colourless-to-pink (Allow yellow-to-pink but not purple-to-pink)	< [1]
			Par	t (b): [4]
	(c)		Water molecules are ligands, in that they coordinate/form dati	ve bonds
			(to the Fe ion) with their (lone) pairs of electrons or lone pairs are donated.	[1]
			A complex ion is an ion/Fe ³⁺ surrounded by/joined to ligands c [Fe(H ₂ O) ₆] ³⁺	or [1]
			Par	t (c): [2]
	(d)	(i)	Haemoglobin transports oxygen in the blood or from lungs (to	o tissues) [1]
		(ii)	CO forms stronger bonds to Hb/Fe ²⁺ than does O_2 or CO has affinity or bonds irreversibly or forms more stable complex	higher [1]
			Par	t (d): [2]
	(e)		Reagent: I ₂ + OH ⁻	[1]
			Observations - ethanol: yellow ppt ./antiseptic smell; methanol change	: no [1]
			Par	t (e): [2]
			То	otal: [13]

Pa	ige 4			Mark Scher			www.dyr	Syll	abus	Paper
				A LEVEL – JUN	E 20	005		97	701	4
	(a)		K _a = [RC	CO2 ⁻][H ⁺]/[RCO2H]					[1]
									Part	(a): [1]
	(b)	(i)	The mor	e chlorine atoms	s in t	the mol	ecule, the stron	iger tl	ne acid,	[1]
			either orwea orfaci orcau the right	ne electron-withd stabilising the an kening the O-H I litates H⁺ donatic sing the equilibri conditional on re	iion, bonc n um	, or spr d in the RCO₂H	eading (-) charg acid, or incre I ⇔ RCO ₂ + H⁺	ge mc asing to lie	ore, ionisati further	
			chlorine							[1]
		(ii)	[H⁺] = √((0.1 x 1.4 x 10 ⁻³)	=	0.011	8 (mol dm ⁻³) alle	ow 0.	012	[1]
			∴ pH =	-log ₁₀ (0.0118)	=	1.93	Allow 1.9 or 1	.92	e.c.f.	[1]
		(iii)	pK _a = -lo	og₁₀(5.5 x 10 ⁻²)	=	1.26	Allow 1.3			[1]
		P								
	(c)	(i)	Cl ₂ (aq) AlCl ₃ or UV negates					[1]		
		(ii) Electrophilic substitution or addition-elimination								[1]
				hilic substitution r mark is awarde tion x2						up [1]
		(iii)	Either: or: or: or: or: or: (in each	add Br ₂ (aq) add FeC <i>l</i> ₃ (aq) add NaOH(aq) add UI solution add "diazonium case, A give no	ph ph ph "to s ph	enol giv enol dis enol go solutior enol giv		ge (A	stays g	
			or: or: or: or:	add MnO ₄ ⁻ /H ⁺ /w add PC <i>l</i> ₅ /POC <i>l</i>	$_{2}O_{7}^{2-}/H^{+}/warm$ A changes colour from orange $_{1}O_{4}^{-}/H^{+}/warm$ A changes from purple to colo $_{1}D_{2}/POCl_{3}/PCl_{3}/SOCl_{2}$ A gives fumes $_{1}CO_{2}H$ + conc. $H_{2}SO_{4}$ A gives fruity so					less
			(in each case, no change with phenol)							
			Test + reagents [1] Both observat					oservati	ons [1]	
									Part	(c): [5]
										al· [12

Total: [12]

	www.dynamicpapers.co							
P	age 5		Mark Scheme	Syllabus	Paper			
			A LEVEL – JUNE 2005	9701	4			
6	(a)	(i)	Electrophilic substitution or nitration		[1]			
		(ii)	$HNO_3 + H_2SO_4$		[1]			
			(both) conc., and at $50^{\circ}C \le T \le 60^{\circ}C$		[1]			
		(iii)	NO_2^+		[1]			
			H NO ₂ H NO ₂					
			etc. or					
			Any \oplus on NO ₂ or H negates		[1]			
			H⁺		[1]			
				Par	t (a): [6]			
	(b)	(i)	Reduction		[1]			
		(ii)	Sn/Fe/Zn/SnC l_2 + HC $l/H^*/H_2SO_4$ (but not conc. H ₂ S or H ₂ + Ni/Pt (not LiA lH_4)	O ₄)	[1]			
				Part	: (b): [2]			
	(c)		PC <i>l</i> ₅ /PC <i>l</i> ₃ /SOC <i>l</i> ₂ /POC <i>l</i> ₃ (+ heat) aq negat	es	[1]			
				Par	t (c): [1]			
	(d)	(i)	An amide, not peptide		[1]			
		(ii)	Heat with H₃O ⁺ or heat with OH ⁻ (aq)					
			Or warm (not heat/reflux) with aqueous amidase/pe enzyme/trypsin/chymotrysin/pepsin/papain etc.	eptidase/pro	otease not [1]			
				Part	: (d): [2]			
				То	tal: [11]			