CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2012 series

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		www.dynamicpap							
	Ра	ge 2	Mark Scheme	Syllabus	Paper				
			GCE O LEVEL – October/November 2012	5070	21				
A1	(a)	 (substance containing) only one type of atom / substance which cannot be bro to any other substance 							
	(b)	(i) galli	lium/Ga		[1]				
		(ii) argo	on/Ar		[1]				
		(iii) bror	mine/Br/Br ₂		[1]				
		(iv) hyd	Irogen/H/H ₂		[1]				
		(v) mag	gnesium/Mg		[1]				
		(vi) argo	on/Ar		[1]				
	(c)	2,8,3			[1]				
					[Total: 8]				
A2	(a)	oxygen/	/air <u>and</u> water						
		ALLOW	/ moist air/damp oxygen		[1]				
	(b)	magnes	sium is more reactive than iron (1)						
		magnes	sium loses electrons rather than iron/magnesium corr	odes instead of iro	n (1) [2]				
	(c)	mixture	of metals / mixture of metal and non metal		[1]				
	(d)	the high	ner the pH the less the corrosion/the lower the pH the	higher the corrosi	on (1)				
		betweer	n pH 5 and 8 there is no difference in corrosion rate ((1)					
		Note: ar alkaline	nswer must make specific reference to pH rather tha	n acid, acidic, alka	li or [2]				
					[Total: 6]				

				WW	w.dynamicpap	ers.com
	Page 3			Mark Scheme	Syllabus	Paper
				GCE O LEVEL – October/November 2012	5070	21
A 3	(a)	(i)	C ₆ H	₁₃ OH		[1]
		(ii)	any	value between 157 and 160 (°C) (actual is 158 °C)		[1]
	(b)	ado	dition	of steam to ethene (1)		
		hig	h tem	perature (1)		
		AL	LOW	200 – 400 °C		
		cat	alyst/s	suitable named catalyst (1)		
		AL	LOW	$H_3PO_4/H_2SO_4/H^+/acid$		[3]
	(c)	(i)	•	suitable e.g. (acidified) potassium dichromate/(acidi ganate(VII)	fied) potassium	[1]
		(ii)	corre	ect structure of propanoic acid		
			H H			
				OW OH rather than O—H OW condensed formulae such as CH₃CH₂COOH		[1]

[Total: 7]

	www.dynamicpape								paper	rs.com	
	Ра	ge 4		Mark Scheme			Syllabus		Paper		
				GCE O LEV	/EL – Octo	ber/Nov	ember 201	2	5070		21
A4	(a)	any	t wo fror	n							
		oxyg	en (1)	ter (1)	mineral (1)						
		organic r ALLOW		ogen/CO ₂							[1]
	(b)	• •	nitrate (phospha	,							[2]
		(ii) :	any fou	r from							
		;	algae bl plants ir (anaero	oom/excess lock off sunl n water die (bic) bacteria bic) bacteria	ight (1) (1) a multiply (1	1)					
			•	ing organisr	•	•••					[4]
											[Total: 7]

				www.dyna	ww.dynamicpapers.com			
F	Pag	je 5		Mark Scheme Sylla	abus	Paper		
				GCE O LEVEL – October/November 2012 50	70	21		
A5 (a	a)	4 0F	$I^- \to$	2 H ₂ O + 4e [−]		[1]		
(k	-		anoo at th	ect direction because electrons are released at the negative de/there is a higher electron density on the hydrogen electro e negative pole is an oxidation reaction		eaction [1]		
	((ii)	H ₂ +	$2OH^- \rightarrow 2H_2O + 2e^-$		[1]		
(c	c)	any	two	from				
		wate	er is t	the only product/water made is non-polluting (1)				
				petrol engine produces carbon dioxide which causes pollution	on/petrol	engine		
		proc	duce	more energy per gram of fuel (1)				
		ALL	.ow	has a higher energy density				
		they	/ are	lighter in weight (1)				
		they	/ do r	not need recharging (1)				
		they	/ are	more efficient/not so many steps in transferring energy (1)				
		hyd	roger	n can be a renewable fuel (1)				
		ALL	.ow	petrol is a non-renewable fuel		[2]		
(c	-		ded f	problems with hydrogen / hydrogen (potentially) explosive / s for storage of (liquefied) gases / hydrogen and oxygen extra-				
						[Tatal, C]		

[Total: 6]

		www.dynamicpapers.com							
	Page 6		Mark Scheme	Syllabus	Paper				
			GCE O LEVEL – October/November 2012	5070	21				
A 6	(a) S(<i>l</i>)) + O ₂	$g(g) \rightarrow SO_2(g)$			[1]			
	(b) (i)	vana	adium(V) oxide/vanadium pentoxide			[1]			
	(ii)	more	e molecules on the left/more moles of gas on the le	ft/less volume on t	the right	[1]			
	(iii)	any	one from						
		equi	librium already well to the right (1)						
		high	yield of sulfur trioxide without increasing pressure	(1)					
		incre	ease in pressure would be expensive (for marginal i	ncreased yield) (1)				
		grea	ter corrosion of converter vessel at higher pressure	(1)		[1]			
	(iv)	reac	tion exothermic (1)						
		high	er temperatures would shift reaction in favour of the	e reactants (1)					
		at lo	wer temperatures rate of reaction is slower (1)			[3]			
	(c) $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$								

(d) moles NaOH = $0.1 \times \frac{28}{1000} = 2.8 \times 10^{-3} \,\text{mol}$ (1)

moles $H_2SO_4 = \frac{1}{2}$ value of that in first stage (1.4 × 10⁻³ mol)/correct use of the mole ratio (1)

concentration of H_2SO_4 = (1.4 × 10⁻³ × $\frac{1000}{9.5}$) = 0.147 (mol/dm³) (1)

(mark is for correct answer)

[3]

[Total: 11]

				WW	w.dynamicpap	cpapers.com		
	Pa	ge 7	,	Mark Scheme	Syllabus	Paper		
				GCE O LEVEL – October/November 2012	5070	21		
B7	(a)	pos	sitive i	ions close to each other in a regular arrangement (1)			
		ele	ctrons	s between the positive ions randomly arranged (1)		[2]		
	(b)	(i)	elec	trons are delocalised/electrons free to move (1)				
		(ii)	laye	rs slide over each other (when a force is applied) (1)	[2]		
	(c)	(i)	Sn +	$H_2O \Rightarrow SnO + H_2$				
			the e	equilibrium sign must be present to gain the mark		[1]		
		(ii)	oxid	e which reacts with acids as bases		[1]		
	(d)	(i)	Sn +	+ $4HNO_3 \rightarrow SnO_2 + 4NO_2 + 2H_2O$		[1]		
		(ii)	add	(concentrated aqueous) sodium hydroxide and alun	ninium foil (1)			
			ALL	.OW add sodium hydroxide and Devarda's alloy				
			warr	m and test gas with red litmus paper (1)				
			(red)) litmus turns blue/ammonia produced (1)				
			ALL	OW the brown-ring test		[3]		
						[Total: 10]		

Page 8				WWV Mark Scheme	w.dynamicpap Syllabus	
	ra	ige ö		GCE O LEVEL – October/November 2012	5070	Paper 21
B8	(a)	any	thre	e from		
		idea	that	fractions separate because they have different boili	ng points (1)	
		temp	perat	ture higher at bottom of column than at top (1)		
				es move up column so heavier ones at the bottom/lig pottom/smaller ones at top (1)	hter ones at top /	larger
		large poin		olecules have higher boiling points / smaller molecul)	les have lower bo	iling
		mole	ecule	es condense when temperature in column falls below	v boiling point (1)	[3
	(b)	(i)	any	two from		
			grou	p of similar organic compounds with		
			sam	e functional group (1)		
			sam	e general formula (1)		
			ALL	OW each member varies by a CH_2 group		
			simil	lar chemical properties (1)		
			ALL	OW same chemical properties		
			trend	d in physical properties (1)		[2
		(ii)	corre	ect displayed formula for butane (1)		
			corre	ect displayed formula for methylpropane (1)		
			 H(H H H H-C-C-C-H H H H H H H H H H H C-C-C-C-H H-C-H H H H H H H		
			DO	NOT ALLOW condensed structural formulae		[2
	(c)	C ₆ H	₁₄ + 9	$91/_2O_2 \rightarrow 6CO_2 + 7H_2O$		
		ALL	ow	correct multiples of this equation		[1

			WW	w.dynamicpap	pers.com
Pa	ige 9	•	Mark Scheme	Syllabus	Paper
			GCE O LEVEL – October/November 2012	5070	21
(d)	(i)	greater than the	supply [1]		
			OW alkenes can be used to make polymers		
	(ii)	bron alke	nine water goes colourless with alkene/aqueous bro ne	mine decolourise	d with [1]
					[Total: 10]
B9 (a)	ma	ss of a	an atom compared to one atom of carbon-12		[1]
(b)	mo	les hy	vdrogen = $\frac{36}{24000}$ = 1.5 × 10 ⁻³ mol (1)		
	mo	les m	agnesium = 1.5×10^{-3} mol (1)		
	ato	mic m	hass of Mg = $\frac{0.036 \times 1}{1.5 \times 10^{-3}}$ (1)		
	no	marks	s for answer alone without working		[3]
(c)	(i)	24 g	$Mg \rightarrow 40 g \; MgO$		
		12 kç	g Mg \rightarrow 20 kg MgO (1)		
		for 7	′5% yield = 15 kg (1)		
		ALL	OW ECF from one incorrect atomic mass		[2]
	(ii)	Mg₃l	N ₂		[1]
(d)	(i)	Mg ₂ s	$S + 2H_2O \rightarrow SiH_4 + 2MgO$		[1]
	(ii)	corre	ect dots and cross diagram similar to that of methane	e	[1]
	(iii)	SiH₄	$+ 2O_2 \rightarrow SiO_2 + 2H_2O$		[1]
					[Total: 10]

			WW	w.dynamicpa	pers.com
Pa	ge 1	0	Mark Scheme	Syllabus	Paper
			GCE O LEVEL – October/November 2012	5070	21
B10(a)	an	y thre	e from		
	to ı	remov	ve impurities in the ore as slag (1)		
	cal	cium	carbonate decomposes to calcium oxide/CaCO $_3 \rightarrow$	$CaO + CO_2(1)$	
	cal	cium	oxide reacts with silicon dioxide/CaO + SiO ₂ \rightarrow CaS	SiO ₃ (1)	
	sla	g is c	alcium silicate/slag is CaSiO ₃ (1)		[3]
(b)	(i)	bari	um carbonate		[1]
	(ii)	the	more reactive the metal the more stable the carbona	ate	[1]
(c)	(i)	suita	able apparatus e.g. gas syringe/upturned measuring	g cylinder (1)	
		clos	ed system – essentially does the method work (1)		[2]
	(ii)		easing pressure decreases the volume <u>and</u> increasively volume (1)	ing temperature in	creases
			reasing pressure) pushes molecules closer together ontainer (1)	so more collision	s with walls
		•	reasing temperature) makes molecules move faster. rgy (1)	/molecules have n	nore [3]
					[Total: 10]