CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

5070 CHEMISTRY

5070/42

Paper 4 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			www.dynamicpapers.com			
Page 2		2	Mark Scheme Syllabus	Paper		
			Cambridge O Level – May/June 2015 5070	42		
1	(a)	(i)	silver/silvery/grey (1)	[1]		
		(ii)	$2Mg + O_2 \rightarrow 2MgO(1)$	[1]		
	(b)	hyc pop	Irogen/ $H_2(1)$ os in flame/burning splint pops/lighted splint pops (1)	[2]		
	(c)	(i)	MgO/magnesium oxide/solid/it disappears/dissolves or a colourless solution/colourless liquid (is formed) (1)	[1]		
		(ii)	$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O(1)$	[1]		
				[Total: 6]		
2	(a)	(i)	32 38 44 all correct (1)			
			(<u>20)</u> (<u>20)</u> <u>12</u> <u>18</u> <u>24</u> all correct (1)	[2]		
		(ii)	exothermic (1)	[1]		
	(b)	(i)	(60/12 = 5 13.3/1 = 13.3 26.7/16 = 1.67) 3 : 8 : 1			
			Empirical Formula = $C_3H_8O(1)$ Reject C_3H_7OH			
			Molecular formula = $C_3H_8O(1)$	[2]		
		(ii)	X = C ₂ H ₅ OH or CH ₃ OH (1) Z = C ₄ H ₉ OH or C ₅ H ₁₁ OH (1)			
			Reasons: e.g. the more carbon atoms in the molecule/ the more carbon-carbon bonds/bigger M_r (reject A_r)/larger molecules the more the temperature (rise)/more heat given out or reverse argument/more exothermic (1)	; [3]		
	(c)	(i)	propanoic (acid) /propionic (acid) $C_2H_5COOH/CH_3CH_2COOH/C_2H_5CO_2H/CH_3CH_2CO_2H$ (both name and structure required) (1)	[1]		
		(ii)	(acidified) potassium manganate(VII) or KMnO ₄ or potassium permanganate (1) purple/pink to colourless/decolourised (1) OR			
			(acidified) potassium dichromate or K ₂ Cr ₂ O ₇ (1) orange to green (1)			
			(in both cases, award of second mark is conditional on first mark being ob	otained) [2]		

-		www.dynam	nicpapers	.com
P	age 3	Mark Scheme	Syllabus	Paper 42
		Cambridge O Lever – May/June 2013	5070	42
	(d)	propyl propanoate (1)		
		$C_2H_5COOC_3H_7/C_2H_5COOC_2H_5CH_3/C_2H_5COOCH_2CH_2CH_3$ $CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/CH_3CH_2CH_3CH_3CH_2CH_3CH_2CH_3CH_2CH_3CH_2CH_3CH_3CH_2CH_3CH_2CH_3CH_2CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$		[2]
				[ک]
				[Total: 13]
3	(d) (1)		[Total: 1]
4	(d) (1)		[Total: 1]
5	(c) (1)		[Total: 1]
6	(b) (1)		[Total: 1]
7	(b) (1)		[Total: 1]
8	(a)	16.11g (1)		[1]
	(b)	filtration/decant(ation)/centrifugation (1)		[1]
	(c)	colourless/green to purple/pink (1)		[1]
	(d)	32.339.447(.0)1 mark for each correct row or column 6.9 13.6 21.8 to the benefit of the candidate (3) 25.4 25.8 25.2		
		Mean value = 25.3 (1) cm^3		[4]
	(e)	0.000506 (1) OR ecf titre × 0.0200/1000		[1]
	(f)	0.00253 (1) OR ecf (e) × 5		[1]
	(g)	(i) 0.0253 (1) OR ecf (f) × 10		[1]
		(ii) 1.42 (1)g OR ecf (g)(i) × 56		[1]
	(h)	8.79 (1) OR ecf (g)(ii)/(a) × 100		[1]

www.dynamic	oa	pers	.cc
S	ılla	hus	F

			www.dynamicpapers.com				
Pag	e 4		Mark Scheme	Syllabus	Paper		
			Cambridge O Level – May/June 2015	5070	42		
(i	i)	(i)	(NH ₄) ₂ SO ₄ : 28/132 × 100 (1) = 21.2% (1)		[2]		
		(ii)	ammonium nitrate/urea/ammonia/ammonium phosphate/potassi	um nitrate e	etc. (1) [1]		
					[Total: 15]		
9 (a	a)	trar	nsition metal/element (ion or compound) absent (1)		[1]		
(b)	(i)	white ppt (1)				
		(ii)	soluble (in excess)/dissolves/(colourless)solution (1)		[2]		
(4	c)	(i)	white ppt AND (ii) soluble (in excess)/dissolves/(colourless) soluti	on (1)	[1]		
(1	d)	M1 M2 M3 M4	(aq) NaOH/sodium hydroxide/ (1) Al/aluminium (foil)/Devarda's alloy (1) warm/heat/boil (1) may appear in observations ammonia/NH ₃ OR <u>gas</u> turns litmus blue (1)				
		AL I Bro	L OW wn ring test: conc. (1) sulfuric acid/H ₂ SO ₄ (1) iron(II) sulfate/FeSO ₄	(1) brown i	ring (1) [4]		
					[Total: 9]		
10 (a	a)	0.6 0.7	3, 0.73, 0.81, 0.81 (1) 6, 0.81, 0.81, 0.81 (1)		[2]		
(b)	Ca	$CO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2(1)$		[1]		
(4	c)	carl esc ren	bon dioxide/gas (evolved which) apes (from the apparatus)/leaves (the apparatus)/is lost (from the a noved (from the apparatus)/is released into the air/is liberated to the	apparatus)/ e outside (1) [1]		
(•	d)	all p	points plotted correctly (1)				
		two one	smooth curves through the points (within one small square) mark for each curve (2)		[3]		
(e)	(i)	0.56 (1)g		[1]		
		(ii)	87.50 – 0.60 (value from candidates graph to \pm half a small square)) = 86.9(0) ((1)g [1]		
(1	f)	incr incr bet	rease rate/increase speed/faster (1) reased surface area/increased area of contact/more contact ween marble and acid (1)		[2]		

	www.dynam	www.dynamicpapers.com		
Page 5	Mark Scheme	Syllabus	Paper	
	Cambridge O Level – May/June 2015	5070	42	

(g) Answers must be consequential on equation in (b) (unless equation is given as part of answer)

For a 1:2 mole ratio $0.036/2 = 0.018 \text{ mol } CaCO_3$ $0.018 \times 100 = 1.8 \text{ (g) (1)}$ $10 - 1.8 = 8.2 \text{ (g) } CaCO_3 \text{ (1)}$

E.c.f for a 1:1 mole ratio $0.036 \times 100 = 3.6 (g) (1)$ 10 - 3.6 = 6.4 (g) (1)

[2]

[Total: 13]