UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	www.dynamicpar				
	Ра	ge 2		yllabus	Paper
			GCE O LEVEL – May/June 2011	5070	22
A1	NO	TE: in A1	(a)-(d) the name takes precedence over the formula if both	given	
	(a)	sodium h	nydroxide / NaOH		[1]
	(b)	•••	I) sulfate / CuSO₄ copper sulfate		[1]
	(c)	ammonia	a / NH ₃		[1]
	(d)	zinc carb	oonate / ZnCO ₃		[1]
					[Total:4]
A2	(a)	C _n H _{2n+2} ALLOW:	x in place of n		[1]
	(b)		CH ₂ CH ₃ / displayed formula; mixture of displayed and structural formula e.g.		[1]
		H ₃ C	СH ₂ CH ₂ ——С——Н Н		
		ALLOW:	(CH ₂) ₂ in middle		
		REJECT	H : – CH at end of molecule H		
		REJECT	: if one or more hydrogen atoms missing in displayed formu	la	
			HCH ₃ / displayed formula mixture of displayed and structural formula		[1]
		REJECT	H : – CH at end of molecule H		

REJECT: if one or more hydrogen atoms missing in displayed formula

(c) (i)	 	GCE O LEVEL – May/June 2011	5070	22
(c) (i)				
	ALL nucl IGN	titution DW: if qualifying adjective to substitution e.g. eophilic substitution/ chlorine substitution DRE: chlorination / halogenation LY: listing e.g. substitution + addition = 0		[1
(ii)	-	correct structure of a chloro substituted butane e.g. $CH_2CH_2CH_2Cl / CH_3CH_2CHCl CH_3 /$		[1
	CH ₃	CH ₂ CHC <i>l</i> CH ₂ C <i>l</i>		
		DW: displayed formula /mixture of displayed and struct LY same rules as in (b)	tural formula	
`´ AL		distillation fractionation		[1
				[Total:6
(a) (i)	cont	ains <u>carbon–carbon</u> double bonds;		[1
	NOT REJ bond	ains many / more than one (double bond); 'E: 2 nd mark dependent on double bonds being stated ECT: ideas of monomers e.g. chains of many monom ls ECT: ideas of polymers	ers which contai	َ] n C=C doubl
(ii)		aqueous bromine / add bromine water; DW: add bromine / bromine liquid / bromine gas		[1
		saturated hydrocarbon, bromine stays orange but uns rated hydrocarbon bromine does not change colour bu		
		OW: red-brown / brown / yellow for colour of bromine (I ORE: unsaturated becomes clear / unsaturated becom		ours / not red)
	ALL	DW: (acidified) potassium mangante(VII) / potassium ${f \mu}$	permanganate (1	mark)
	unsa	saturated hydrocarbon, potassium permanganate aturated decolourised / with saturated hydrocarbon pota change colour but unsaturated decolourised (1 mark)	• • •	•
		E: it must be made clear which is the test for saturate turated compound	ed and which is t	he test for th

APPLY: listing e.g. adding hydrogen and oxygen = 0 IGNORE: conditions

		www.	dynamicpape	ers.com
Paç	ge 4	Mark Scheme: Teachers' version		Paper
		GCE O LEVEL – May/June 2011	5070	22
(c)	carb	on dioxide / CO ₂ ;		[
	ALL	r / H ₂ O / steam / hydrogen oxide DW: carbon dioxide / CO ₂ and water / H ₂ O etc as products LY: listing	from an equatio	n [
		DW: error carried forward from wrong M_r (for 1 mark) DW: 1 mark for M_r = 80 if answer is incorrect and no error	carried forward	[
(e)	(i)	Any two from:		[2
		 (increased) global warming / increased atmospheric warmer / Earth will be hotter / environment is getting h NOT: it is getting hot climate change / example of climate change e.g. dese / more hurricanes / more tornados / more winds etc NOTE: there must be emphasis on increase in drast in weather conditions is not enough. rise in sea level / polar ice melts / polar ice-cap melts lying areas IGNORE: ice melts without qualification / flooding with IGNORE: pollution / effect on humans / mention of ozer. 	otter ertification / more ic weather condi / glaciers melt / out qualification	heavy storn tions. Chang flooding of lo
		$NH_4NO_3 \rightarrow N_2O + 2H_2O$ ALLOW: multiples GNORE: state symbols		[
				[Total: 1
(a)	7			I
(b)	(nun	iber of protons) 117;		[
		ber of neutrons) 163	number of prot	[

ALLOW: error carried forward from number of protons i.e. 280 – number of protons)

		www.	dynamicpap	ers.com
Page	e 5	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – May/June 2011	5070	22
(c) A	Any 2 of			[2]
•	not	electrical conductor / does not conduct electricity / conduct heat	poor conductor	of heat / does
•	has the than	(relatively) low melting point / (relatively) low boiling Group / highest boiling point of the Group / higher iodine	•	• •
•	blac ALL	: higher melting point / boiling point alone k / grey / dark (no other colours e.g. dark brown) OW: darker than iodine / astatine ORE: darker (without iodine/ astatine)		
•	inso radio	luble in water / soluble in organic solvents pactive		
	IGN	ORE: low density / dull surface / soft / hazardous / pois	sonous / diatomi	C
(d) (i		+ $F_2 \rightarrow MgF_2$ ORE: state symbols		[1]
(i	i) F⁻ is (only	2,8 ; / 1 F [−] need be shown)		[1]
	Mg ²	t is 2,8		[1]
	ALL ALL ALL	OW: information from diagram OW: 1 mark for Mg ^{2⁺} and F [−] (correct charges) OW: 1 mark for correct electronic structure for both ior OW: Fl [−] for F [−] harge in nucleus in two otherwise correct diagrams =		8

_	-			dynamicpape	
Paç	ge 6		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May/June 2011	5070	22
(e)	(i)		ed pair of electrons between carbon and each of the 4 OW: all dots / all crosses	halogen atoms;	[1]
		IGN IGN	of structure correct ORE: inner shells of electrons ORE: type of halogen atoms e.g. CC¼ / CF ₄ ECT: incorrect arrangement of atoms e.g. CF ₃		[1]
	(ii)	Any	one of:		[1]
		•	poor conductor of heat / does not conduct heat has low melting point / has low boiling point / it is a gas allow: it is a liquid low density insoluble in water / soluble in organic solvents IGNORE: covalent / forms dimers	5	
(iii)	conv	ne depletion / destroys ozone layer / damages ozone la verts ozone to oxygen OW: global warming / any of the results of global warm ECT: acid rain	-	[1]
					[Total: 12]
• •		•	rong) covalent bonds : has a giant molecular structure		[1]
	tem ALL nee NO	perat .OW: ded t T: (ju:	lot of energy to break bonds / needs a lot of heat ure to break bonds hard to break the bonds / large amount of energy to o o break strong forces between atoms st) lot of energy needed to break strong forces : references to intermolecular or ionic forces = 0 for the	overcome bonds	[1]
(b)	• •	fixed no s ALL	ree electrons / no mobile electrons / electrons not free I in position / no delocalised electrons / <u>all</u> electrons ea of electrons OW: the four electrons needed to form a covalent bond ORE: no ions to move	involved in cova	
	/::)	lear	ne) electrons free to move / it has delocalised el	octrone / bluo	diamond has

(ii) (some) electrons free to move / it has delocalised electrons / blue diamond has delocalised electrons (some of the) electrons are delocalised / (some) free electrons / sea of electrons [1]
 IGNORE: boron is metallic / boron is a metalloid / boron has sea of electrons / boron has delocalised electrons

		www.dynamicpape	ers.com
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	5070	22

- (c) Any two from:
 - conducts electricity / has free moving electrons
 - high melting point
 - (relatively) unreactive
 - ALLOW: less reactive / doesn't react with solution
 - doesn't dissolve in water / insoluble in water IGNORE: price / it is a solid

[Total: 6]

[2]

- A6 (a) Nylon / Kevlar / Trogamid / Kermal / Nomex / Twaron / Technon / Teijinconex / Rilson / Ultramid [1]
 - (b) Marks can be obtained from written material or diagram

spot of mixture on (filter) paper above solvent level and paper dipping into solvent [1] ALLOW: liquid (for solvent)

from diagram: paper dipping into a solvent (which needn't be labelled) and spot shown on either (i) just above solvent or (ii) further up the paper with base line shown or (iii) on base line and further up

NOTE: base line and /or spot must be above solvent level ALLOW: liquid (for solvent)

spray with locating agent / use locating agent / spray with ninhydrin / use ninhydrin; [1] ALLOW; spray with colouring agent

NOTE: the locating agent mark must be in context of the paper after running the amino acids not at another stage e.g. adding it to the solvent

The next 2 marks can be accessed in two ways:

EITHER

First way:

measure R_f value(s) / use R_f values / description of how to measure R_f e.g.

 $R_{\rm f} = \frac{\text{distance moved by spot (from base line)}}{\text{distance moved by spot (from base line)}}$

distance moved by solvent front (from base line)

compare against standard $R_{\rm f}$ values / compare with known $R_{\rm f}$ values/ compare with $R_{\rm f}$ values in book [1]

OR

Second way: run known and unknown amino acid on the same piece of paper [1] ALLOW: from diagram with labels of known and unknown

compare unknown (amino acid) with distance travelled by known (amino acids) on same piece of paper

ALLOW: from diagram showing spots of known and unknown run the same distance with some labelling explanation in words e.g. same (distance) / run equal distance [1]

[Total:5]

[1]

-			w.dynamicpapers.c	
	Page 8	Mark Scheme: Teachers' version		aper
		GCE O LEVEL – May/June 2011	5070	22
B7 (a	ALLC reacta produ IGNC	n absorbs energy / reaction absorbs heat / it absorbs V: temperature of surroundings decreases / energy on the state of surroundings decreases / energy of the state of surroundings decreases / energy of surroundings decreases / energy of the state of surroundings decreases / energy of surroundings decreases / e	of products greater than e / it goes cold / bond e positive	
(I		t to the right and above reactants; V: NO / nitrogen oxide as product		[1]
	IGNC	orward reaction correctly labelled; RE: double-headed arrow / arrow without any heads /		[1]
		arrow pointing downwards arrow does not have to start exactly at reactant line	and finish exactly at max	kimum of
	ALLC	elled correctly with arrow pointing upwards (for endot V: + 66 (kJ mol ⁻¹) in place of ΔH V: $H2 - H1$ with $H2$ and $H1$ shown on vertical axis of c		[1]
	level	arrow does not have to start exactly at reactant le arrows with double heads / arrow pointing downwards	-	product
		Max 2 marks for error carried forward from a reacts on right as long as the arrows for E_a and ΔH are approximately and ΔH are approximately be according to the second		and has
(0	c) moles	$N_2 = \frac{100}{28}$ or 3.57 / 3.6 ;		[1]
	ALLC	nitric oxide = 7.14 / indication of 2 x moles of N_2 V: error carried forward from incorrect moles N_2 RE: 2 x mass in grams		[1]
	ALLC Cand	of nitric oxide = (7.14 x 30) = 214 g V: 214.2 g / 214.3 / 214.28 / 214.29 g / answer to the late uses (minimum 2 SF's) V: error carried forward from incorrect moles of nitric o		[1] Jures the
	IF: fir	V: answer to two significant figures e.g. 210 t marking point has been reduced to 2 significant fig the second marking point (1 mark) and an answer of		nis gives
	-	₂ gives 60 g nitric oxide (1 mark) Ŋ₂ gives (100 x 60/28 g) nitric oxide = 214 g (1 mark)		
	mass	of nitric oxide = (7.14 x 30) = 214 g		
	INOT	: correct answer without working scores 3 marks]		

www.dynamicpapers.com

			www.	dynamicpa	pers.cor	n
Pa	age 9		Mark Scheme: Teachers' version	Syllabus	Pap	er
			GCE O LEVEL – May/June 2011	5070	22	
(d)			eases / speed increases; rticles in given volume / more particles in same volu	me / more pa	rticles per	[1] cm ³ /
	par IGN	ticles IORE	more crowded / particles closer together / more conce : more collisions unqualified / more particles in a given molecules / atoms / species for particles	ntrated particle		[1]
	cha IGN	more collisions per second / collision frequency increases/ increases co chance of collisions / collide more often / higher probability of collisions; IGNORE: more effective collisions / more energetic collisions unqualified / IGNORE: equilibrium statements				[1]
						al: 10]
B8 (a)	H⁺/	′ H₃O [*]	+			[1]
(b)	(i)	carb	oon dioxide / CO ₂			[1]
	(ii)	Mg(C ₂ H ₅ CO ₂) ₂ / (C ₂ H ₅ CO ₂) ₂ Mg / Mg(C ₂ H ₅ COO) ₂ / (C ₂ H ₅ CO	0O)₂Mg		[1]
(c)	(i)	mole	es hydrogen = <u>60</u> or 0.0025 ; 24000			[1]
			es magnesium = 0.0025 ; OW: error carried forward from moles of hydrogen			[1]
		ALL	s magnesium (= 0.0025 x 24) = 0.06 g OW: error carried forward from moles of magnesium / e g 22 400 as molar gas volume	error carried	forward	[1] from
		[corr	rect answer without working = 3 marks)			
	(ii)		e volume at the end of the experiment ; e general shape but initial gradient less and levels out	after 120 s		[1] [1]
(d)	-	• • • • • •	+ $C\Gamma(aq) \rightarrow AgCl(s)$ balanced equation ;			[1]
	cor	rect s	tate symbols (dependent on the correct species)			[1]
					[Tota	al: 10]

	Pag	ge 10	Mark Scheme: Teachers' version	dynamicpap Syllabus	Paper
			GCE O LEVEL – May/June 2011	5070	22
В9	(a)		ly packed positive ions regularly arranged; CT: closely packed atoms		[1
			f electrons / delocalised electrons / free electrons; Ξ: electrons can be shown in diagram as e⁻ / e or – or dot	ts labelled electr	[1 on
		IGNO Note	tion between electrons and positive ions RE: attraction between electrons and protons E: marks can be obtained from either written description y contradictory statements	or a diagram bu	[1 It take accoun
	(b)	• •	electrons can move / has delocalised electrons / electrons has mobile electrons	are free / has se	ea of electron: [1
		(ii) ir	mpure copper anode <u>and</u> pure copper cathode ;		[1
		A N A e A	electrolysis of (aqueous) copper(II) sulfate / copper(II) nitra ALLOW: electrolysis of copper sulfate / copper nitrate NOT: electrolysis of copper chloride ALLOW: description of electrolysis e.g. cells connect electrolyte / pass electric current through solution of copper ALLOW: relevant information from a diagram GNORE: copper being deposited at the wrong electrode	ted to electrod	[1 es dipping ii
	(c)	gunm ALLO	 / bronze / gilding metal / Muntz metal / yellow meta betal / speculum metal / (cupro) nickel-silver / duralumin W: smart alloy / gold alloy RE: steel alloys 	l / bell metal /	cupro-nickel [1
	(d)	Any tl	hree of:		[3
		S	opper ores are in limited supply / are becoming worke aves resources / less copper extracted from the soil GNORE: no waste of copper	ed out / are finit	te (resource)
		• le	ess energy used (in recycling than in extracting from the o educes pollution / reduces waste / reduces trash / less e	•	eyesore / les

- y 7 y landfill / no landfill IGNORE: does not cause pollution
- (need to) sort out recycled metals / (need to) collect scrap / collecting scrap (costs • money) / collecting scrap requires energy
- need to purify the recycled copper
- (less mining) saves more land for other uses / (less mining) saves land for more ٠ agriculture

IGNORE: costs / time consuming

[Total: 10]

					ers.com
Pag	ge 1	1	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May/June 2011	5070	22
B10(a)	СН	₂ 0			[1]
(b)	(i)	ALL	$D_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ OW: $6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$ ORE: word equation		[1]
	(ii)	Any	two of:		[2]
		• •	needs <u>sun</u> light (NOT: light alone) needs chlorophyll needs enzyme(s) temperature values quoted from 20 and 40 °C (if range within the range) ALLOW: 'body' temperature IGNORE: temperature more than a specified temperat specified temperature / room temperature APPLY: listing but ignore CO ₂ and H ₂ O in listing	-	
(c)	(i)	Any	two of:		[2]
			temperature values quoted from 20 and 40 °C (if range within the range) ALLOW: 'body' temperature IGNORE: temperature more than a specified tempera specified temperature / room temperature	-	

- water / moisture / damp IGNORE: humid
- needs yeast / enzymes / zymase
- pH 7 / pH near 7 / neutral
- absence of oxygen / anaerobic IGNORE: minerals / salts APPLY: listing

	www.	dynamicpap	ers.com
Page 12	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	5070	22
• • •	∕lethod 1: noles of glucose = <u>1000000</u> / 5 556 / 5 555.5 ; 180		[
	noles ethanol = 2 x moles glucose / 11 111 / 11 112 ; ALLOW: error carried forward from wrong moles of glucos	e	[
t A	nass of ethanol = (46 x moles ethanol) = 511 106 g / 511 o 0.511 152 tonnes ALLOW: 0.51(1) tonnes / 511 000 g / 510 000 g ALLOW: error carried forward from incorrect moles of etha	-	g / 0.511 10 [
[correct answer without working = 3 marks]		
l a N	ALLOW: 0.5 as final answer depending on working being on F: no other marks scored allow correct molar masses of and 46 NOTE: if working is in tonnes but answer incorrect candic and a mark for 2 x moles glucose	f glucose and e	thanol i.e. 18
	ALLOW: credit for answers derived from particular part $e.g. 5.5 \times 10^3 \times 2 = 1 \times 10^4$ gets the first 2 marks.	rounded to 1 sig	gnificant figu
1 ii <i>4</i> 1	Alternative: Method 2 80 g glucose \rightarrow 46 g ethanol (1 mark) ndication of correct molar ratio e.g. 2 x 46 / 92 (1 mark ALLOW: error carried forward 000 000 g glucose \rightarrow 1 000 000 x 92/ 180 = 511 111 g (ALLOW: error carried forward from incorrect moles of etha	(1 mark)	
• • •	produces a greenhouse gas / carbon dioxide is a green	-	•

(iii) produces a greenhouse gas / carbon dioxide is a greenhouse gas / need to separate ethanol from fermentation mixture (or words to that effect) [1]
 ALLOW: fermentation is a slow process
 IGNORE: fermentation is a long process / takes a long time
 ALLOW: fewer food crops / fewer plants grown for food / food crop used for biofuels instead of food
 IGNORE: global warming / carbon dioxide given off / high activation energy

[Total:10]