UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	dynai	micpa	narc	com
VV VV VV .	uyıla	HIIGPa	pers.	COILL

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL – May/June 2011	5070	21	

A1 Allow correct name but formula takes precedence

(a)
$$V_2O_5(1)$$
 [1]

(d)
$$CF_3Cl_3$$
 (1)

(e)
$$(NH_4)_2SO_4 / ZnSO_4$$
 (1) [1]

(g)
$$(NH_4)_2SO_4(1)$$
 [1]

[Total: 7]

(c)
$$H^+ + OH^- \rightarrow H_2O$$
 (1) Ignore state symbols [1]

(ii)
$$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$$

Balanced equation (1)
Correct state symbols (1) [2]

(e) Mol ratio Cu:O =
$$\frac{79.9}{64}$$
 : $\frac{20.1}{16}$ / 1.25 : 1.26 (1)
CuO (1)

[Total: 8]

www.dynamicpapers.com

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL – May/June 2011	5070	21	

A3 (a) (i) same number of electrons / same number of protons / same electronic arrangement of electrons / both have 92 electrons / both have 92 protons (1) [1]

(ii) different number of neutrons / uranium-238 has three more neutrons (1) [1]

(b) (i)
$$UO_2 + 4HF \rightarrow UF_4 + 2H_2O(1)$$
 [1]

(ii)
$$UF_4 + 2Mg \rightarrow U + 2MgF_2$$
 (1) [1]

- (iii) reaction involving gain of electrons / reaction involving decrease in oxidation number (1)

 Allow a reaction involving the loss of oxygen / gain of hydrogen [1]
- (iv) M_r of $UO_2 = 270$ (1) Moles of $UO_2 = 3704$ (1) **Allow** ecf from wrong M_r Mass of uranium = 0.881 tonnes (1) **Allow** ecf from wrong moles Correct answer scores **all three** marks

OR

Alternative approach using percentage composition M_r of $UO_2 = 270$ (1) % of U = 88.1% (1) **Allow** ecf from wrong M_r Mass of uranium = 0.881 tonnes (1) **Allow** ecf from wrong percentage [3]

(c) between magnesium and copper (1) [1]

[Total: 9]

			dynamicpap				
Page 4			Syllabus	Paper 21			
(a)	*						
(b)	Particles	in a gas are moving faster than particles in a liquid (1)		[2			
(c)	unit volu So more	me / particles are more concentrated (1) collisions per second / increased collision frequency					
(d)	Allo	$\mathbf{w} \operatorname{Fe}^{2^{+}} - \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{3^{+}}$		[1]			
	ions	(1)	a / add (aqueo	us) hydroxide [2			
(e)				[2 [Total: 11]			
(a)	78–79 %	(1)		[1			
(b)	of liquid	air / liquefy air (1))	[3			
(c)	Photosyn carbon d And any two Respirat Combus	nthesis decreases carbon dioxide and increases oxioxide into oxygen (1) from on increases carbon dioxide and decreases oxygen (1) tion increases carbon dioxide and decreases oxygen (1)	kygen / green	olants change			
	(a) (b) (c) (d) (e)	Rest of signore in (b) Must be Particles Particles (c) Particles unit volume So more chance of Allo Allo (ii) Add ions Show (Colour of Colour o	Page 4 Mark Scheme: Teachers' version GCE O LEVEL – May/June 2011	Page 4 Mark Scheme: Teachers' version GCE O LEVEL - May/June 2011 5070			

(d) Used in flue-gas desulfurisation / removal of sulfur dioxide from gaseous emissions of power station / absorbs the sulfur dioxide / neutralises (acidic) sulfur dioxide (1) Added to lakes to neutralise acidic water (1) [2]

[Total: 10]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL – May/June 2011	5070	21	

B6 (a) Calcium nitrate solution contains ions / AW (1)
Pentane only contains molecules / pentane is a covalent compound / pentane does not contain ions (1)

[2]

(b) Sodium and chlorine (1) Allow Na and Cl_2 [1]

(c) Hydrogen, chlorine (and sodium hydroxide) (1)

Allow H₂, Cl₂ (and NaOH) [1]

(d) Electrolyte is aluminium oxide (dissolved in cryolite) / alumina (1)
Graphite electrodes / Carbon electrodes (1)
[2]

(e) (i) Gets plated with copper (1) $Cu^{2^+} + 2e^- \rightarrow Cu (1)$ [2]

(ii) 1.21 (g) [1]

(iii) 1.75 (g) [1]

[Total: 10]

B7 (a) Propanol / propan-1-ol / propan-2-ol (1) [1]

(b) CH₃CH₂CH₂CH₂OH / CH₃CH₂CHOHCH₃ (1)
Only contains (C—C) single bonds (1)
Allow there are no (carbon-carbon) double bonds [2]

(c) $C_7H_{16}O$ (1) Allow $C_7H_{15}OH$ [1]

(d) (i) $CH_3COOC_2H_5$ (1) [1]

(ii) Solvent (1)
Allow flavouring / perfume [1]

Allow flavouring / perfume [7

(e) C₆H₁₂O₆ → 2C₂H₅OH + 2CO₂ (1) Use of yeast (1) Any temperature or range of temperature within 20–40 °C / absence of oxygen / anaerobic conditions / presence of water / Fractional distillation (to separate ethanol) (1)

Ignore incorrect reactants this has been assessed by the equation

(f) Ethene / C₂H₄ (1)

[Total: 10]

[3]

[1]

Page 6		age 6 Mark Scheme: Teachers' version Syllabus				•	per					
		GCE O LEVEL – May/June 2011 5070								21		
38 (a	(a)	E	Allov Beca	ion of equili make more suse the real cosition of ec	e CH ₃ CO action is e	OH xotherm	nic / to	release	energy (1) This mark	is depend	dant on [2]
		(ii) F	Read	ction is faste	r / activati	on ener	gy is ve	ery high (1)			[1]
(I	(b)	Not a Note Maxi	ect la w dor arrow ect la arrow - ar mum imum	of curve	ration ener d arrow he lirection alpy chan irection / o that have to	rgy for the ad / arrouge (1) double he start ex	ne forw ow with neaded cactly a	ard react out any l arrow t reactar	neads [°] nt level a	nd finish exaction tha		
(0	(c)			ne activatior ore effective			succes	sful collis	sions			[1]
(0	(d)	Maxii 98%		n moles that	can be m	ade is 1	0 / limit	ing react	tant is th	e carbon mon	oxide (1)	[2]
(0	(e)	CH₃C	CO ₂ N	NH ₄ (1)							[To	[1] otal: 10]
39 (a	(a)	Only	parti	ially dissocia	ates / doe	s not co	mpletel	y ionise	(1)			[1]

(b) Use universal indicator (1)

Idea that the different colours indicate different pH values / match colour against a colour chart (1)

Allow this mark even for an incorrect indicator

(c) Moles of sulfamic acid = $\frac{0.105}{97}$ / 0.00107 (1)

Moles of KOH =
$$\frac{10.8}{1000}$$
 × 0.100 / 0.00108 (1)

so reacts with one mole (1)

(d) (i) Mg + $2SO_3NH_3 \rightarrow Mg(SO_3NH_2)_2 + H_2(1)$ [1]

(ii)
$$CaCO_3 + 2SO_3NH_3 \rightarrow Ca(SO_3NH_2)_2 + H_2O + CO_2$$
 (1) Forms carbon dioxide / bubbles (1) Allow carbon dioxide from the equation [2]

[Total: 10]

[2]

[3]