	Candidate Number	Name	www.dynamio		
	ITY OF CAMBRID	-	ATIONAL EXAMINAT n Ordinary Level	IONS	
CHEMISTRY			50	070/03	5
Paper 3 Pract	tical Test		May/	June 2004	Ļ
			1 hour 30		
Additional Materi	ver on the Question Pa ials: e Instructions to Super				-
READ THESE INSTRUC	TIONS FIRST				
Write your Centre numbe Write in dark blue or blac You may use a pencil for Do not use staples, pape You may use a calculato	ck pen in the spaces pro r any diagrams, graphs er clips, highlighters, glu	ovided on the (or rough work		page.	
Qualitative analysis notes You should show the es provided on the question	ssential steps in any c		l record experimental re	sults in the	e space:
			Fo	r Examine	
					r's Use
details. If any details are	incorrect or			1	r's Use
details. If any details are missing, please fill in you	incorrect or Ir correct details			2	r's Use
If you have been given a details. If any details are missing, please fill in you in the space given at the Stick your personal label provided.	incorrect or ir correct details top of this page.				r's Use

For

Examiner's Use

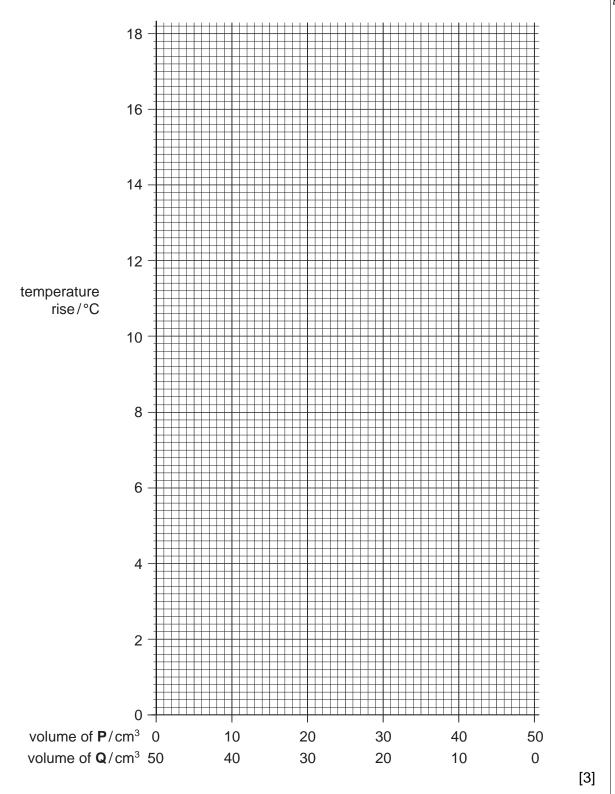
1 The reaction between hydrochloric acid and sodium hydroxide is exothermic.

P is 2.0 mol/dm^3 hydrochloric acid.

Q is aqueous sodium hydroxide of unknown concentration.

The concentration of sodium hydroxide in \mathbf{Q} can be found by mixing different volumes of \mathbf{P} and \mathbf{Q} and measuring the increase in temperature.

- (a) (i) Put P into the burette and measure out 10 cm³ of P into a plastic cup. Measure the temperature of P to the nearest 0.5 °C and record the value in column C of the table.
 - (ii) Measure 40 cm³ of Q, as accurately as possible, using a measuring cylinder. Pour this volume of Q into the plastic cup containing P. Stir, using a thermometer and measure the highest temperature reached. Record the value in column D of the table. Calculate the temperature rise for the experiment and record the value in column E of the table.
 - (iii) Empty the plastic cup and rinse it with water.
 - (iv) Repeat the procedure described in (i) to (iii) but using the different volumes of P and Q given in columns A and B of the table.


Α	В	C	D	E
<i>volume of</i> P/cm ³	<i>volume of</i> Q /cm ³	<i>initial</i> <i>temperature</i> of P /°C	highest temperature of mixture/°C	temperature rise/°C
10	40			
20	30			
30	20			
40	10			

[12]

(b) Plot a graph of temperature rise (column E) against volume of P (column A) on the grid opposite. Using these points, draw two straight lines. These lines should cross.

www.dynamicpapers.com

For Examiner's Use

(c) From the graph, what is the largest temperature rise which could occur?

Largest temperature rise is°C

(d) Read from the graph, the volumes of both **P** and **Q** which produce the largest temperature rise. These volumes of **P** and **Q** react together to form a neutral solution.

Volume of ${\bf P}$ is $\rm cm^3$

Volume of ${\bf Q}$ is $\rm cm^3$

 (e) P is 2.0 mol/dm³ hydrochloric acid. Using your answers to (d), calculate the concentration, in mol/dm³, of sodium hydroxide in Q.

Concentration of sodium hydroxide in **Q** is mol/dm³

[2]

For

Examiner's Use

[1]

[1]

BLANK PAGE

2 Carry out the following experiments on solution **S** and record your observations in the table. You should test and name any gas evolved.

Test No.	Test	Observations
1	Put a portion of S into a boiling- tube and warm gently .	
2	(a) To a portion of S , slowly add hydrochloric acid until a change is seen.	
	(b) Add excess hydrochloric acid to the mixture from (a).	
3	(a) To a portion of S , add an equal volume of aqueous barium nitrate and allow the mixture to stand for a few minutes.	
	(b) Add nitric acid to the mixture from (a).	

4	(a) To a portion of S, add an equal volume of water and then add aqueous silver nitrate.(b) Add dilute nitric acid to the	
	mixture from (a) .	
5	(a) To a portion of S , add an equal volume of aqueous potassium iodide.	
	(b) To a portion of the mixture from (a) add an equal volume of dilute hydrochloric acid and allow the mixture to stand for a few minutes.	
	(c) Add aqueous sodium thiosulphate to the mixture from (b).	

[19]

Conclusions

Give the formulae of two ions present in S.

The ions present in \boldsymbol{S} are and

[2]

NOTES FOR USE IN QUALITATIVE ANALYSIS

anion	test	test result
carbonate (CO_3^{2-})	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous lead(II) nitrate	yellow ppt.
nitrate (NO ₃) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ^{2–}) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Tests for anions

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt. or very slight white ppt.
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulphur dioxide (SO ₂)	turns aqueous potassium dichromate(VI) from orange to green

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.