CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	WW	/w.dynamicpa	pers.com
Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	www.dynamicpapers.com					
	Page 4 Mark Scheme			Syllabus	Paper	
			GCE O LEVEL – October/Nov	ember 20	12 4037	12
1	(i)	$\left(\frac{24}{7}\right) = 2$	5	M1 A1 [2]	M1 for a complete meth and the modulus	nod to find the sum
	(ii)	$4\lambda - \mu = 3\lambda + 2\mu = \lambda = 4$ and	= 2	M1 DM1 A1 [3]	M1 for equating like ve DM1 for solving simult	
2	(i)	$\frac{1}{2} \begin{pmatrix} 1.5 \\ 1 \end{pmatrix}$;)	B1 B1 [2]	B1 for reciprocal of det B1 for matrix	erminant
	(ii)		$ \begin{pmatrix} -1 \\ 1.5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 6 \\ -0.5 & 4 \end{pmatrix} $ $ \begin{cases} 5 & 1 \\ -0.5 & 4 \end{pmatrix} $	M1	M1 for correct use of in must be using pre-multi their inverse, must see a multiply out.	plication with
		$=\frac{1}{2}\begin{pmatrix}1\\0\end{pmatrix}$	$ \begin{array}{c} 13\\14 \end{array} \text{or} \begin{pmatrix} 0.5 & 6.5\\0 & 7 \end{pmatrix} $	A2,1,0 [3]	-1 each error	

www.dynamicpapers.com				
Page 5	Mark Scheme		Syllabus Pape	r
	GCE O LEVEL – October/Nov	ember 20 ⁻	12 4037 12	
$3 (i) = \frac{\cos (i)}{\sin (i)} + \frac{\cos (i)}{\cos (i)} + $	$\sin(1+\cos(1+\cos(1+\cos(1+\cos(1+\cos(1+\cos(1+\cos(1+\cos(1+\cos(1+\cos$	B1	B1 for $\cot \theta = \frac{\cos \theta}{\sin \theta}$	
COS (+ C	$os^{2}(+\frac{[sin]^{2}()}{sin((1+cos()))})$	M1	M1 for attempt to add fractions	
= (("cos"	" (" + 1"))/("sin" "(" ("cos"(" ·	M1	M1 for use of identity	
$= \frac{1}{\sin (} = \operatorname{cosec}($ Alternative scheme	:	M1 A1 [5]	M1 for algebra/simplification Must see cosec θ for A1	
$=\frac{1}{\tan(1+\cos(1))}$				
= (("1" " + " "co	s" [{"(") +" "tan" "(" " " "sin" "(
= ("1" " + " "cos	""(" + " (K"sin"] [*] 2" "(")/"ca	M1	M1 for attempting to add fractions	
= ("cos" "(" " +	" K"cos"] 1"2" "(" + " [["sin"]]			
= (("cos" "(" + :	1"))/("sin" "(" ("cos" "(" " " + 1"	B1	B1 for $\tan \theta = \frac{\sin \theta}{\cos \theta}$	
$=\frac{1}{\sin \theta}=\cos \theta$				
		M1	M1 for use of identity	
		M1 A1	M1 for algebra/simplification Must see cosec θ for A1	
	ec $\theta = 0.5$, leads to sin $\theta = 2$ s no solutions.	B1 [1]	Needs an explanation	

	www.dynamicpapers.com					
	Page 6	6	Mark Scheme		Syllabus	Paper
			GCE O LEVEL – October/No	vember 20 [°]	12 4037	12
	<i>(</i>) 1	. 1	2	D1		
4	(i) \log_{10}		$\log_a q = 9$ $\log_a q = 15$	B1 B1		
	2 10	pg _a p 1	$\log_a q = 15$	M1	M1 for solution of the tw	vo equations
	log	$_{a} p = 6$	and $\log_a q = 3$	A1	A1 for both	vo equations
	0			[4]		
Or	0					
	a' = 15	$pq = pq = p^2q$		B1		
			ch leads to $\log_a p = 6$	B1		C (1)
	<i>u</i> –	- <i>p</i> will	childred to $\log_a p = 0$	M1	M1 for complete solutio equations	n of the two
	$a^3 =$	<i>q</i> whi	ch leads to $\log_a q = 3$	A1	A1 for obtaining both in	correct log form
Or		2	1		2	
	-		$\log_a pq = 6$	M1	M1 for $\log_a p^2 q - \log_a p$	pq = 6
	log	$a \frac{p^-q}{pq}$	$= 6, \log_a p = 6$	B1	B1 for $\log_a \frac{p^2 q}{pq} = 6$	
		a pq = $og_a q = $	$\log_a p + \log_a q = 9$ = 3	B1 A1	B1 for $\log_a pq = \log_a p + A1$ for both	$+\log_a q = 9$
	(ii) log ₁	$_{p}a + 1c$	$\log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}, = 0.5$	M1, A1 [2]	M1 for change of both to	o base <i>a</i> logarithm
5	Using x =	= 6 + 2	$2y \text{ or } y = \frac{x-6}{2}$	M1	M1 for attempt to obtain one variable.	an equation in
	$y^2 + 4y -$	- 12 = 0	0 or $x^2 - 4x - 60 = 0$	M1	M1 for reducing to a three quated to zero	ee term quadratic
	(<i>y</i> + 6)(<i>y</i>	v – 2) =	0 or $(x+6)(x-10) = 0$	DM1	DM1 for correct attempt from points of intersection	· ·
	leading t and	-	-6, y = 2 -6, x = 10	A1 A1	A1 for each correct pair	
	$AB = \sqrt{2}$			M1	M1 for correct attempt to	
	= √ 3	520 , 1	3√5 or 17.9	A1 [7]	A1 Allow in any of these	e torms

Page 7	7 Mark Scheme)	www.dynamicpa	pers.com Paper
	GCE O LEVEL – October/N			12
6		B1	If sin 15° is not used, t available B1 for correct statemen	
	or equivalent	M1	M1 for correct manipul sin $u =$ an expression ir	
$P = \frac{2\sqrt{2}}{3\sqrt{2}+4}$		M1	M1 for attempt to obtain reasonable attempt at si their numerator	
		M1	M1 for attempt to ration attempt at simplification	
		A1 [5]		
sin (= 6	5 – 4 √2			
7 (i) BC,	, <i>BE</i> , <i>EC</i> : $y - 4 = m(x - 8)$ or $y - 8 = m(x - 6)$	M1	M1 for attempt to obtai BC , BE , EC , (gives $y =$	
AD,	$AE: y-4=-\frac{1}{m}$ (x + 5)	M1	M1 for attempt to obtai AD, AE, (gives $2y = x + $	
For	D, $y = 8$ and $x = 3$	B1, A1	B1 for $y = 8$, allow any A1 for $x = 3$	where
	E, 40 - 4x = x + 13 or equivalent ding to $x = 5.4, y = 9.2$	M1	M1 for attempt at the p of <i>BE</i> with AD, not dep	
	1	A1 [6]	A1 for both	
	$ea = \frac{1}{2} (13 + 3) \times 4$			
or =	$= \frac{1}{2} \begin{vmatrix} 3 & 6 & 8 & -5 & 3 \\ 6 & 8 & 4 & 4 & 8 \end{vmatrix}$	M1	M1 for a correct attemp allow odd arithmetic sl	
:	= 32	A1		
		[2]		

www.dynamicpapers.com

		m.aynannopa	p010.00111
Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	12

8	(i)	Area = $\frac{1}{2}$ 18 ² sin 1.5 - $\frac{1}{2}$ 10 ² (1.5)	M1	M1 for attempt at area of a sector with $r = 10$
		= 161.594 - 75	M1	M1 for attempt at area of triangle with correct lengths used
		= 86.6	A1 [3]	
		(or area of triangle = $\frac{1}{2} \times 24.539 \times 13.170$)		
	(ii)	$AC = 15 \text{ or } 10 \times 1.5$ $LBD = 36 \sin 0.75$ $BD = \sqrt{18^2 + 18^2 - (2 \times 18 \times 18 \cos 1.5)}$ = 24.5	B1 M1	B1 for AC M1 for correct attempt at BD – can be given if seen in (i)
		Perimeter = $15 + 24.5 + 16$ = 55.5	M1 A1 [4]	M1 for attempt to obtain perimeter
9	(a)	(i)	B1 B1 B1 B1 [4]	B1 for either correct amplitude or period for $y = \sin 2x$ B1 for $y = \sin 2x$ all correct B1 for translation of +1 parallel to y-axis or correct period for $y = 1 + \cos 2x$ B1 for $y = 1 + \cos 2x$ all correct
		(ii) $x = \frac{\pi}{4}, \frac{\pi}{2}$	B1, B1 [2]	Allow in degrees
	(b)	(i) Amplitude = 5, Period = $\frac{\pi}{2}$ or 90°	B1,B1 [2]	B1 for each
		(ii) Period = $\frac{\pi}{3}$ or 60°	B1 [1]	

	WW	w.dynamicpa	oers.com
Page 9	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	12

10 (i) $f\left(\frac{1}{2}\right): \frac{3}{2} + \frac{a}{2} + b = 0$	M1	M1 for use of $x = \frac{1}{2}$ and equating to zero
$f'(x) = 12x^2 + 8x + a$	M1	M1 for differentiation
$f'\left(\frac{1}{2}\right): 3 + 4 + a = 0$	M1	M1 for attempt to obtain $a = -7$ from $f'\left(\frac{1}{2}\right)$
Leading to $a = -7$ and $b = 2$	A1 A1 [5]	
(ii) $f(-3) = -49$	M1 A1 [2]	M1 for use of $x = -3$ in either the remainder theorem or algebraic long division.
(iii) $f(x) = (2x - 1)(2x^2 + 3x - 2)$	M1, A1 [2]	M1 for attempt to obtain quadratic factor
(iv) $f(x) = (2x - 1)(2x - 1)(x + 2)$ Leading to $x = 0.5, -2$	B1 B1 [2]	B1 for each – must be correct from work

	WM	/w.dynamicpa	pers.com
Page 10	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	12

11 EITHER		
(i) $= \frac{10x}{(1 + x^{2})^{2}}$ or $\frac{dy}{dx} 5x^{2}(-2x(1 + x^{2})^{-2}) + (1 + x^{2})^{-1} 10x$	M1 A2,1,0 A1 [4]	M1 for attempt to differentiate a quotient -1 each error
(ii) Stationary point at (0, 0)	B1	
$\frac{\mathbf{d}^2 y}{\mathbf{d}x^2} = \frac{\left(1+x^2\right)^2 10 - 10x(4x)\left(1+x^2\right)}{(1+x^2)^4}$	M1	M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough. Must have attempted to solve $\frac{dy}{dx} = 0$
When $x = 0$, $\frac{d^2 y}{dx^2}$ is +ve, minimum (iii)	A1 [3]	If using second derivative, must be either a product or quotient for M1 together with some sort of conclusion.
(iii) $\int \frac{x}{(1+x^2)^2} dx = \frac{1}{2} \frac{x^2}{(1+2^x)} (+c)$ $\int_{-1}^2 \frac{x}{(1+x^2)^2} dx = \frac{1}{2} \left[\frac{4}{5} - \frac{1}{2} \right]$ $= 0.15$	B1 B1 M1 A1 [4]	B1 for $\frac{xx^2}{(1+x^2)}$, B1 for $\frac{1}{2}\frac{x^2}{(1+x^2)}$ M1 for correct use of limits in an attempt at integration

	www.dynamicpapers.com		
Page 11	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	12

11	OR		
	(i)		
	$\frac{dy}{dx} = \frac{(x^2 - 2)2Ax - (Ax^2 + B)2x}{(x^2 - 2)^2}$	M1 A2,1,0	M1 for attempt to differentiate a quotient –1 each error
	$=\frac{2x(Ax^2-2A-Ax^2-B)}{(x^2-2)^2}$		
	$=\frac{2x(2A+B)}{(x^2-2)^2}$	A1 [4]	Answer given
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 - 2)^{-1} 2Ax + (-2x)(x^2 - 2)^{-2} (Ax^2 + B)$		
	(ii) $5 = 2A + B$	M1	M1 for use of conditions once
	3 = A + B	M1	M1 for use of conditions a second time
			and attempt to solve resulting equations
	Leading to $A = 2, B = 1$	A1	
		[3]	
	(iii) when $\frac{dy}{dx} = 0, x = 0$	B1	B1 for correct <i>x</i>
	$y = -\frac{1}{2}$	√B1	\checkmark B1 for $y = -\frac{B}{2}$
	$\frac{d^2 y}{dx^2} = \frac{(x^2 - 2)^2 (-10) - (-10x) 4x(x^2 - 2)}{(x^2 - 2)^4}$	M1	M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough.
			Must have attempted to solve $\frac{dy}{dx} = 0$
			If using second derivative, must be
			either a product or a quotient for M1
	When $x = 0$, $\frac{d^2 y}{dx^2}$ is -ve \therefore max		together with some sort of conclusion.
	dx^2	A1 [4]	A1 for a correct conclusion from completely correct work.