CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

4037/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	www.dynam	nicpapers	.com
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015		22

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FŤ	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

		_	
WWW	without w	wrong	working

1	(i)	$ \begin{array}{c} $	B3,2,1,0	2 correctly placed in Venn diagram; 1, 3, 4, 6 correctly placed; 12, 8, 0, 7, 9, 10 correctly placed; 11, 5 correctly placed
	(ii)	3	B1ft	correct or correct ft <i>their</i> (i), provided non-zero
	(iii)	{4, 6}	B1ft	correct or correct ft <i>their</i> (i), provided not the empty set
2	(i)	$\begin{bmatrix} \mathbf{P} = \end{bmatrix} \begin{pmatrix} 60 & 70 & 58 \\ 50 & 52 & 34 \end{pmatrix} \text{ and } \begin{bmatrix} \mathbf{Q} = \end{bmatrix} (120 300)$	B2	or $[\mathbf{P} =] \begin{pmatrix} 50 & 52 & 34 \\ 60 & 70 & 58 \end{pmatrix}$ and $[\mathbf{Q} =] (300 120)$
	(ii)	(22200 24000 17160)	B2	or B1 if one error may be written as an unevaluated product; B0 if choice of P and Q offered must have brackets and must not have commas; must be a 1 by 3 matrix; must be from correct product; working may be seen in (i) or B1 for any two elements correct
	(iii)	The total (amount of revenue) from all (three) flights. oe	B1	do not accept, e.g. The total amount from each flight; must be a comment not just a figure; must not contain a contradiction

			www.dynam		.com
Page 3	Mark Scheme		4 5	Syllabus	Paper
	Cambridge O Level – May	/June 20	15	4037	22
3 (i)	$\frac{\left(36+15\sqrt{5}\right)}{\left(6+3\sqrt{5}\right)} \times \frac{\left(6-3\sqrt{5}\right)}{\left(6-3\sqrt{5}\right)} \text{ oe}$	M1	or $\frac{\left(12+5\sqrt{5}\right)}{\left(2+\sqrt{5}\right)} \times \frac{1}{\sqrt{5}}$	$\frac{\left(2-\sqrt{5}\right)}{2-\sqrt{5}}$ oe	
	$\frac{216 + 90\sqrt{5} - 108\sqrt{5} - 225}{-9}$	DM1	or $\frac{24 + 10\sqrt{5} - 12}{-1}$		
	$1 + 2\sqrt{5}$ cao	A1	or $-\left(24+10\sqrt{5}\right)$ allow $a = 1$ and b		
	Alternative method: $36+15\sqrt{5} = (6a+15b)+(3a+6b)\sqrt{5}$	M1			
	6a + 15b = 36 3a + 6b = 15	DM1			
	a = 1 and $b = 2$	A1	or $1 + 2\sqrt{5}$		
(ii)	$\left[AC^{2} = \left(6 + 3\sqrt{5}\right)^{2} + their\left(1 + 2\sqrt{5}\right)^{2}\right]$ $= 36 + 36\sqrt{5} + 45 + their\left(1 + 4\sqrt{5} + 20\right)$	M1	correct or correct Pythagoras with (-
	$102 + 40\sqrt{5}$ cao	A1	ignore attempts to answer seen	o square root	after correct
4 (i)			Alternatively		
	$\cos(x) = \frac{2}{3}$ oe soi	M1	$\sin(y) = \frac{2}{3}$ oe soi		
	48.189° or 131.810° or 0.8410 rad or 2.3(00) rad oe isw	A1	41.810° or 0.7297 or 0.73((0) rad oe isw	7
	with reference axis indicated by comment, e.g. "to the bank" or "upstream", etc. or clearly marked on a diagram		with reference axi e.g. "to the perper etc. or clearly man	ndicular with	the bank",
			If M0 then SC1 for answer of 138.189 318.189° or 5.5 with reference axi e.g. "on a bearing clearly marked on	9° or 2.411 534 rad is indicated b g of" or "fron	8 rad or y comment,

			www.dynam		
Page 4	Mark Scheme	4 5	Syllabus	Paper	
	Cambridge O Level – May	June 20	15	4037	22
(ii)	Speed = $\sqrt{9-4} \left(=\sqrt{5}\right)$ or $3\sin 48.2$ or	B1	Or Distance = $\frac{1}{si}$	$\frac{80}{n48.2} = 107.$	(33)
	2 tan 48.2 or 3 cos 41.8 or $\frac{2}{\tan 41.8}$ or $\sqrt{2^2 + 3^2 - 2 \times 2 \times 3 \cos 48.2}$ oe				oe soi
	$\sqrt{2^2 + 3^2} - 2 \times 2 \times 3\cos 48.2$ oe				
	or 2.236(0) rot to 4 or more figs or 2.24 [m/s] soi				
	time = $\frac{80}{their\sqrt{5}}$ oe	M1	time = $\frac{their 107.3}{3}$	33	
	35.66 to 35.8 (seconds) oe	A1	ignore subsequen conversion to, e.g answer spoiled by	. minutes but	A0 if
			if no working, so for an answer 35.		allow B3
5	Substitution of either $4 - x$ or $4 - y$ into equation of curve and brackets expanded	M1	condone one sign equation of curve brackets; condone 4 - x or $4 - y$ mus	or expansion e omission of	of
	$12x^2 - 52x + 48 = 0$ or $12y^2 - 44y + 32 = 0$ oe	A1			
	Solve their 3-term quadratic	M1	dep on a valid sub	ostitution atte	mpt
	$x = \frac{4}{2}$ and 3 isw	A1	or $x = \frac{4}{2}$ $y = \frac{8}{2}$		
	3		not from wrong w	vorking	
	$y = \frac{8}{3}$ and 1 isw	A1	or $x = 3$ $y = 1$ not from wrong w	vorking	
			if no working, all correct answer on		s for fully
6 (a)	$(x-2) \log 6 = \log \left(\frac{1}{4}\right)$ oe or $\log_6\left(\frac{1}{4}\right) = x-2$ oe	M1	or $x \log 6 = \log \left(\frac{3}{2}\right)$	$\left(\frac{66}{4}\right)$ oe	
	$\log_6\left(\frac{1}{4}\right) = x - 2 \text{ oe}$		or $x \log 6 - \log 36$	$= \log 1 - \log 1$	4 oe
	1.23 or 1.226(29) rot to 4 or more figures isw	A1	correct answer or	1.22 implies	M1

www.dynamicpapers.com

Page 5	Mark Scheme		Syllabus	Paper	
	Cambridge O Level – May	15	4037	22	
(b)	Method 1 $\log\left(\frac{8 \times 2y^2 \times 16y}{64y}\right) = \log 4^2 \text{ oe}$ $y = 2$	B3 B1	or B2 if at most or or B1 if at most tw steps not from wrong w	wo errors or c	•
	Method 2 $\log 2 + 2 \log y + 3 \log 2 + 4 \log 2 + \log y - 6 \log 2 - \log y = 4 \log 2$	B3,2,1,0	<u>LHS terms</u> log 2 y^2 = log 2 + 2 log 8 = 3 log 2; log 16 y = 4 log 2 + -log 64 y = -6 log 2 <u>RHS term</u> 2 log 4 = 4 log 2	$+\log y;$	
	<i>y</i> = 2	B1	not from wrong w	orking	
7	$\frac{n(n-1)(n-2)(n-3)(2^4)}{4 \times 3 \times 2 \times 1} = 10 \frac{n(n-1)(2^2)}{2 \times 1}$ or better	M3	condone omitting $n-1$; must have c		
			M2 if one slip/om or M1 if two slips		
			or B1 for $\frac{n(n-1)}{2}(2)$ and B1 for $\frac{n(n-1)(n-1)}{2}$ seen		$^{4}[x^{4}]$
	$n^2 - 5n - 24 = 0$ oe	A1	equivalent must be $n^2 - 5n = 24$	e 3-terms, e.g	5.
	(n+3)(n-8) = 0	M1	or any valid metho 3-term quadratic	od of solution	n for their
	n = 8 only	A1	A0 if -3 also give not discarded If zero scored, allo unsupported or wi	ow SC1 for <i>n</i>	= 8

Page 6	Mark Scheme			Syllabus	Paper
	Cambridge O Level – May	/June 20	15	4037	22
3	Method 1 (Separate areas subtracted)				
	$[x_B = x_C =]$ 7 soi	B1			
	$\left[\int (x^2 - 6x + 10) dx = \right] \frac{x^3}{3} - \frac{6x^2}{2} + 10x$	M2	or M1 for at least	one term cor	rect
	Correct or correct ft substitution of limits 0 and <i>their</i> 7 into <i>their</i> $\left[\frac{x^3}{3} - \frac{6x^2}{2} + 10x\right]$	DM1	dep on at least M evidence of substi <i>their</i> integral which terms; condone on	itution must b ch must be at	be seen i least tw
	$\frac{1}{2}(10+17) \times 7 \text{ oe or}$ $\int_{0}^{7} (x+10) dx = \left[\frac{x^{2}}{2} + 10x\right]_{0}^{7} = \frac{(7)^{2}}{2} + 10(7)$ oe	B2	or M1 for $\frac{1}{2}(their \ 10 + their)$ or B1 for $\int (x+10) dx = \frac{x^2}{2}$		7 oe
	$their\left(\frac{189}{2} - \frac{112}{3}\right)$	M1	dep on a genuine equation of the cu must be <i>their</i> area line – <i>their</i> attemp	nrve; 1 trapezium/u	nder the
	$\frac{343}{6}$ or $57\frac{1}{6}$ or 57.2 to 3 sf or $57.16(6)$ rot to 4 figs isw	A1	from full and corr omitted steps	ect working	with no

Method 2 (Subtracting and using integration once)

$$\left[x_B = x_c = \right] 7 \text{ soi}$$

$$\int \left(-x^2 + 7x\right) dx$$

$$\left[-\frac{x^3}{3} + \frac{7x^2}{2}\right] \text{ oe or } \left[\frac{x^3}{3} - \frac{7x^2}{2}\right] \text{ oe }$$

Correct or correct ft substitution of limits 0 and *their* 7

into their
$$\left[-\frac{x^3}{3} + \frac{7x^2}{2}\right]$$

 $\frac{343}{6}$ or $57\frac{1}{6}$ or 57.2 to 3 sf or $57.16(6...)$

B1 condone omission of dxB1 or M2 for M3 $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$ or either with $p = \pm 1$ or $q = \pm 7$ or M1 for $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$ with non-zero constants p and q, with $p \neq$ ± 1 and $q \neq \pm 7$ dep on a valid integration attempt; M2 evidence of substitution must be seen; condone omission of lower limit; A1 from full and correct working with no

omitted steps

			www.dynamicpapers.com
Page 7	Mark Scheme		Syllabus Paper
	Cambridge O Level – May	/June 20	15 4037 22
9 (i)	10 = 2m + 4 soi	M1	or $[m =]\frac{10 - 4}{2 - 0}$ oe soi
	m = 3	A1	
(ii)	1	B1	
(iii)	$\frac{10 - y_R}{21} = 1 \text{ oe soi}$ (-1, 7) or $x = -1$ and $y = 7$	M1	or $y = x + 8$ oe
	(-1, 7) or $x = -1$ and $y = 7$	A1	if $y = 7$ only stated, provided that $x = -1$ is soi in working allow both marks
			if M0 then B1 for $y = 7$ only with no working
(iv)	Use of $m_1 m_2 = -1$ with <i>their m</i> from (i)	M1	may be implied by perpendicular gradient seen in equation
	$y - 10 = \left(their - \frac{1}{3}\right)(x - 2)$	A1	or $\left(their - \frac{1}{3}\right)x + c$ and
			$10 = \left(their - \frac{1}{3}\right)2 + c$
	3y + x = 32 isw	A1	allow for correct equation with integer coefficients in any simplified form
(v)	$\left(\frac{1}{2}, their\frac{11}{2}\right)$ oe isw	B1,B1ft	ft <i>their</i> y_Q
			or M1 for $\left(\frac{2-1}{2}, \frac{10+1}{2}\right)$ seen
(vi)	4.5 oe cao	B2	not from wrong working
			or M1 for any correct method with correct coordinates
10 (a)		B2,1,0	correct sinusoidal/reflected sinusoidal shape, all above <i>x</i> -axis with intent to have all maximum points of equal height;
	<u>0</u> <u>90</u> <u>180</u> <u>270</u> <u>360</u>		2 maximum points of intended equal height only over 0 to 360;
			all max points clearly at $y = 1$;
	• • • • •		cusp at 180

www.dynamicpapers.com

Page 8	Mark Scheme		Paper
	Cambridge O Level – May/June 2015	4037	22

(b)(i)	$[hg(x) =] \frac{e^{\ln(4x-3)} + 3}{4}$	M1	Alternative method $y = \ln(4x - 3)$ and change of subject to x
	fully correct and completion to $[hg(x) =] x$	A1	fully correct and comment that $h(x) = g^{-1}(x)$ oe
(ii)	y = h(x) $y = g(x)$ $y = g(x)$	B2,1,0	correct shape; 1 marked on the <i>y</i> -axis or (0, 1) stated close by; curve with positive gradient in first quadrant only
(iii)	$x \ge 0$ or $[0, \infty)$	B1	not domain ≥ 0
(iv)		B1	or $h(x) \ge 1$, $h \ge 1$ etc.
11 (i)	$\frac{8-h}{8}$ or $8:8-h$ soi	M1	or $\frac{8}{8-h}$ or $8-h$: 8 soi
	$\frac{8-h}{8} \times 4$ oe	A1	or $4 \div \frac{8}{8-h}$ oe
	$h\left(\frac{8-h}{8}\times4\right)^2$ oe	M1	<i>h</i> must be in the numerator of the expression for this mark;
	expand and simplify to $\frac{h^3}{4} - 4h^2 + 16h$ AG	A1	
(ii)	$\frac{3}{4}h^2 - 8h + 16$ oe	B1	
	<i>their</i> $\left(\frac{3}{4}h^2 - 8h + 16\right) = 0$ and attempt to solve	M1	must be a 3-term quadratic; must be an attempt at a derivative
	$\frac{8}{3}$ oe only	A2	or A1 for $h = \frac{8}{3}$ and 8
			allow 2.67 or 2.66(6) rot to 4 or more figs for $\frac{8}{3}$

www.dynamicpapers.com

Page 9	Mark Scheme Syllabus Paper				
	Cambridge O Level – May	/June 20 ⁻			
12 (i)	-120 + 104 + 22 - 6 = 0	B1	or correct synthetic division		
	or correct unsimplified form, e.g. $15(-2)^3 + 26(-2)^2 - 11(-2) - 6 = 0$ or 15(-8) + 26(4) - 11(-2) - 6 = 0		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(ii)	Substituting $x = 3$ into $15x^3 + 26x^2 - 11x - 6$	M1	or correct synthetic division		
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	600	A1	correct answer implies M1; must be explicitly identified as answer if using synthetic/long division methods by e.g. circling		
(iii)	$(x-1)(15x^3+26x^2-11x-6)$ soi	B1	by inspection or division; may be implied by e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and $a = 1, b = -1$ seen in later work comparing coefficients		
	Multiply out $(x \pm 1)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic	M1	or multiply out, e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic		
	<i>p</i> = 11	A1	correct p or q implies M1; correct p and q		
	<i>q</i> = 5	A1	www implies B1 M1		