CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

4037/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	www.dynam	nicpapers	.com
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B 1	
(ii)	2	B 1	
(iii) (a)		B 1	$y = \sin 2x$ all correct
(b)		B1 B1	for either $\uparrow \downarrow \uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y = 3$ and lowest value at $y = -1$ completely correct graph
(iv)	3	B 1	
2 (i)	$\tan \theta = \frac{\left(8 + 5\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}{\left(4 + 3\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}$ $= \frac{32 - 24\sqrt{2} + 20\sqrt{2} - 30}{16 - 18}$ $= 1 + 2\sqrt{2} \text{cao}$	M1 A1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used

		/w.dynamicpapers.com	
Page 3	Mark Scheme	Syllabus Paper 4037 11	
	Cambridge O Level – May/June	4037 11	
(ii)	$\sec^2 \theta = 1 + \tan^2 \theta$ $= 1 + \left(-1 + 2\sqrt{2}\right)^2$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, with
	$=1+1-4\sqrt{2}+8$	DM1	<i>their</i> answer to (i) attempt to simplify, must be convinced no calculators are being used.
	$= 10 - 4\sqrt{2}$ Alternative solution:	A1	Need to expand $(-1+2\sqrt{2})^2$ as 3 terms
	$AC^{2} = (4 + 3\sqrt{2})^{2} + (8 + 5\sqrt{2})^{2}$ $= 148 + 104\sqrt{2}$		
	$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
	$=\frac{148+104\sqrt{2}}{\left(4+3\sqrt{2}\right)^2}\times\frac{34-24\sqrt{2}}{34-24\sqrt{2}}$	DM1	
	$=10-4\sqrt{2}$	A1	
3 (i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	-1 each error
(ii)	$\left(64+192x^2+240x^4\right)\left(1-\frac{6}{x^2}+\frac{9}{x^4}\right)$	B1	expansion of $\left(1-\frac{3}{x^2}\right)^2$
	Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using <i>their</i> (i)
	= 1072	A1	

	Page 4			Syllabus Paper
		Cambridge O Level – May/June	4037 11	
				ii
4	(a)	$\mathbf{X}^2 = \begin{pmatrix} 4 - 4k & -8\\ 2k & -4k \end{pmatrix}$	B2,1,0	-1 each incorrect element
	(b)	Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1	use of $AA^{-1} = I$ and an attempt to obtain at least one equation.
		Any 2 equations will give $a = 2, b = 4$	A1,A1	
		Alternative method 1: $\frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{2} & \frac{1}{2} \end{pmatrix}$	M1	correct attempt to obtain A^{-1} and
		$\begin{bmatrix} 5a-b(b & a) & \left(-\frac{2}{3} & \frac{1}{3}\right) \\ \text{Compare any 2 terms to give } a = 2, b = 4 \end{bmatrix}$		comparison of at least one term.
		Alternative method 2:	A1,A1	
		Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning and attempt at inverse
5		$3x-1 = x(3x-1) + x^2 - 4$ or		
		$y = \left(\frac{y+1}{3}\right)y + \left(\frac{y+1}{3}\right)^2 - 4$		
		$4x^{2}-4x-3=0 \text{ or } 4y^{2}-4y-35=0$ (2x-3)(2x+1)=0 or (2y-7)(2y+5)=0	M1 DM1	equate and attempt to obtain an equation in 1 variable forming a 3 term quadratic equation
		leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and	A1	and attempt to solve <i>x</i> values
		$y = \frac{7}{2}, y = -\frac{5}{2}$	A1	<i>y</i> values
		Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$	B1	for midpoint, allow anywhere
		Perpendicular gradient = $-\frac{1}{3}$	M1	correct attempt to obtain the gradient of the perpendicular, using <i>AB</i>
		Perp bisector: $y - \frac{1}{2} = -\frac{1}{3}\left(x - \frac{1}{2}\right)$	M1	straight line equation through the midpoint; must be convinced it is a
		(3y+x-2=0)	A1	perpendicular gradient. allow unsimplified

	Page 5	Mark Scheme	Syllabus Paper	
		Cambridge O Level – May/June	4037 11	
				· · · · · · · · · · · · · · · · · · ·
6	(i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$	M1	correct use of either $f\left(\frac{1}{2}\right)$ or $f(1)$
		leading to $a + 4b = 46$ f(1) = $a - 15 + b - 2 = 5$		paired correctly
		leading to $a+b=22$	A1	both equations correct (allow unsimplified)
		giving $b = 8$ (AG), $a = 14$	M1,A1	M1 for solution of equations A1 for both <i>a</i> and <i>b</i> . AG for <i>b</i> .
	(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1	M1 for valid attempt to obtain $g(x)$, by either observation or by algebraic long division.
	(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of $b^2 - 4ac$
		$b^2 < 4ac$ $16 < 56$	A1	correct conclusion; must be from a correct $g(x)$ or $2g(x)$ www
		$(x-1)\frac{8x}{(4-x^2+3)} - \ln(4x^2+3)$	M1	differentiation of a quotient (or product)
7	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x-1)\frac{6x}{(4x^2+2)} - \ln(4x^2+3)}{(x-1)^2}$	B1 A1	correct differentiation of $\ln(4x^2 + 3)$ all else correct
		When $x = 0$, $y = -\ln 3$ oe	B1	for <i>y</i> value
		$\frac{dy}{dx} = -\ln 3$ so gradient of normal is $\frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attempt to obtain gradient of the normal
		normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at normal equation must be using a perpendicular
		or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao (Allow $y = 0.91x - 1.1$)	A1	
	(ii)	when $x = 0$, $y = -\ln 3$ when $y = 0$, $x = (\ln 3)^2$	M1	valid attempt at area
		Area = ± 0.66 or ± 0.67 or awrt these or $\frac{1}{2}(\ln 3)^3$	A1	
		2 (113)		

	Page 6	Mark Scheme	w.uynan	Syllabus	Paper	
		Cambridge O Level – May/June 2015			4037	11
l						
8	(i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1			
	(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to o	btain the inv	verse function
		$g^{-1}(x) = -2 + \sqrt{x-5}$ Domain of g^{-1} : $x \ge 9$	A1 B1	Must be cor for domain	rrect form	
		Alternative method: $y^{2} + 4y + 9 - x = 0$ $y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	M1 A1	attempt to u find inverse must have +	;	formula and
	(iii)	y = 2 Need $g(3e^{2x})$ $(3e^{2x} + 2)^2 + 5 = 41$	M1 correct order			the equation
		or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$ leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2}\ln\frac{4}{3}$	M1		-	ntial correctly
		or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	in order to r Allow equiv	each a solut	ion for <i>x</i>
		Alternative method: Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$	M1	correct use	-	
		leading to $3e^{2x} = 4$, so $x = \frac{1}{2}\ln\frac{4}{3}$	DM1	dealing with equation in	terms of e^{2x}	
			M1 A1	dealing with in order to r Allow equiv	each a solut	
	(iv)	$g'(x) = 6e^{2x}$ $g'(\ln 4) = 96$	B1 B1	B1 for each		

Page 7	Mark Scheme	Syllabu	JS	Paper	
	Cambridge O Level – May/June 2015	4037		11	

9 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation
	When $x = 0$, for curve $\frac{dy}{dx} = 3$,		
	dx gradient of line also 3 so line is a tangent.	A1	comparing both gradients
	Alternate method:		
	$3x + 10 = x^3 - 5x^2 + 3x + 10$	M1	attempt to deal with simultaneous equations
	leading to $x^2 = 0$, so tangent at $x = 0$	A1	obtaining $x = 0$
(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$	M1	equating gradient to zero and valid attempt to solve
	$x = \frac{1}{3}, x = 3$	A1,A1	A1 for each
(iii)	1		
	Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10dx$	B1	area of the trapezium
	$=\frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x\right]_0^3$	M1	attempt to obtain the area enclosed by the curve and the coordinate axes, by
	$=\frac{87}{2} - \left(\frac{81}{4} - 45 + \frac{27}{2} + 30\right)$	A1 DM1	integration integration all correct correct application of limits
	= 24.7 or 24.8	A1	(must be using <i>their</i> 3 from (ii) and 0)
	Alternative method:		
	Area = $\int_0^3 (3x+10) - (x^3 - 5x^2 + 3x + 10) dx$	B1 M1	correct use of ' <i>Y</i> – <i>y</i> ' attempt to integrate
	$=\int_0^3 -x^3 + 5x^2 \mathrm{d}x$	A1	integration all correct
	$= \left[-\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^3 = \frac{99}{4}$	DM1 A1	correct application of limits
10 (a)	$\sin^2 x = \frac{1}{4}$		
	$\sin x = (\pm)\frac{1}{2}$	M1	using $\csc x = \frac{1}{\sin x}$ and obtaining
	<i>x</i> = 30°, 150°, 210°, 330°	A1,A1	$\sin x =$ A1 for one correct pair, A1 for another correct pair with no extra solutions

	•
www d	vnamicpapers.com

Page 8	Mark Scheme	Syllabus Paper	
l ugo o	Cambridge O Level – May/June	4037 11	
	* *		· · · · · · · · · · · · · · · · · · ·
(b)	$(\sec^2 3y - 1) - 2\sec 3y - 2 = 0$	M1	use of the correct identity
	$\sec^2 3y - 2\sec^3 y - 3 = 0$	M1	attempt to obtain a 3 term quadratic
	$(\sec 3y + 1)(\sec 3y - 3) = 0$ leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$	M1	equation in sec 3y and attempt to solve dealing with sec and 3y correctly
	$3y = 180^{\circ}, 540^{\circ}$ $3y = 70.5^{\circ}, 289.5^{\circ}, 430.5^{\circ}$ $y = 60^{\circ}, 180^{\circ}, 23.5^{\circ}, 96.5^{\circ}, 143.5^{\circ}$	A1,A1 A1	A1 for a correct pair, A1 for a second correct pair, A1 for correct 5 th solution and no other within the range
	Alternative 1: $\sec^2 3y - 2\sec 3y - 3 = 0$	M1	use of the correct identity
	leading to $3\cos^2 3y + 2\cos 3y - 1$	M1	attempt to obtain a quadratic equation in $\cos 3y$ and attempt to solve
	$(3\cos y - 1)(\cos y + 1) = 0$	M1	dealing with $3y$ correctly A marks as above
	Alternative 2: $\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$ $(1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0$	M1	use of the correct identity, $\tan y = \frac{\sin y}{\cos y}$ and $\sec y = \frac{1}{\cos y}$, then as before
(c)	$z - \frac{\pi}{3} = \frac{\pi}{3}, \frac{4\pi}{3}$	M1	correct order of operations
	$z = \frac{2\pi}{3}, \frac{5\pi}{3}$ or 2.09 or 2.1, 5.24	A1,A1	A1 for a correct solution A1 for a second correct solution and no other within the range