CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2014 series

4037 ADDITIONAL MATHEMATICS

4037/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

WM				w.dynamicpap	pers.com
F	Page 2	Mark Scheme		Syllabus	Paper
		GCE O LEVEL – May/June 20	14	4037	22
1	ratio	police the denominator to get			
I	$\frac{1}{2}$	$\frac{(2+\sqrt{5})^2(\sqrt{5}+1)}{5-1}$ or better		or squaring to get	$\frac{4+4\sqrt{5}+5}{\sqrt{5}-1}$ or
	squar	squaring to get			
	(4+)	$\frac{(4+4\sqrt{5}+5)(\sqrt{5}+1)}{their4}$ or better		or rationalising the get $\sqrt{2}$	the denominator to $\overline{(1,1)}$
	$\frac{29}{4}$ +	$\frac{13}{4}\sqrt{5}$ oe isw	A1 + A1	$\frac{their(9+4\sqrt{5})\sqrt{5}}{5-1}$ correct simplifica	$\frac{(5+1)}{(5+1)}$ or better
				Allow $\frac{29+13\sqrt{5}}{4}$	- etc.
2	Corre	ectly eliminate y	M1	$-kx+2=2x^2-9$	9x + 4 oe
	$2x^{2}$ -	+(k-9)x+2[=0]oe	A1	allow even if x te condone $\dots = y$ p implies it should	erms not collected; rovided later work be 0
	Use	$b^2 - 4ac$ oe	M1	must be applie quadratic express as a coefficient; c	d to a 3 term sion containing k condone < 0 etc.
	Reac	h $their(k-9=\pm 4)$ or			
	solve	s $their(k^2 - 18k + 65) = 0$	M1	condone $9-k =$ inequality at this	= ±4 ; condone an stage
	<i>k</i> = 5	and 13 cao	A1	mark final answer A0 if inequalities	r, do not isw; for final answers

Inamichandre	com
 vitattiituauets.	COILI

ĺ	Page	3	Mark Scheme		Śyllabus	Paper	
			GCE O LEVEL – May/June 20 [°]	14	4037	22	
3	; (i)	3(-1) to <i>d</i> =	$r^{3} - 14(-1)^{2} - 7(-1) + d = 0$ with completion = 10	B1	at least $-3 - 14 + d = 10$; N.B. = 0 implied by = d be seen in follow or convincingly s $3(-1)^3 - 14(-1)^2$ at least -3 - 14 + 7 + 10 or correct synthe as far as -1 3 - 14 -3	7 + d = 0, must be seen or d or = -d, may ing step. showing -7(-1)+10 = 0; = 0 tic division at least -7 = 10 17 = -10	
	(ii)	$3x^2 -$	-17x + 10 isw or $a = 3, b = -17, c = 10$ isw	B2, 1, 0	-1 each error; must be seen or referenced in (ii) even if found in (i) or (iii)		
	(iii)	(x+1)	(x-5)(3x-2)	M1	for factorising quadratic ft correct; condone omission of $(x+1)$ or for ft correct use of formula or ft correct completing the square		
		-1, 5,	$,\frac{2}{3}$	A1	If M0 then SC1 for all three root stated without working or verified/found by trials		

www.dvnamicpapers.com

ſ	Page 4		Mark Scheme		<u>Śyllab</u> us	Paper	
			GCE O LEVEL – May/June 2014		4037	22	
		1			1		
4	(i)	12(x	$\left(-\frac{1}{4}\right)^{2} + \frac{17}{4}$ isw	B3 , 2, 1,0	one mark for each of p , q , r correct in a correctly formatted expression allow correct equivalent values;		
					If B0 then SC2 f	for $12\left(x - \frac{1}{4}\right) + \frac{17}{4}$	
					SC1 for correct 3 incorrect format $12\left(x - \frac{1}{x}\right) + \frac{17}{x}$	3 values seen in e.g.	
					$ \begin{pmatrix} 4 \\ 12 \\ x^2 - \frac{1}{4} \\ + \frac{17}{4} \\ \text{or for a correct c} \end{pmatrix} $	ompleted square	
					form of the original expression in a different but correct format. e.g.		
					$3\left(2x-\frac{1}{2}\right)^{2}+\frac{17}{4}$		
	(ii)	their	$\frac{4}{17}$ or <i>their</i> 0.235	B1ft	strict ft ; <i>their</i> $\frac{4}{17}$ fraction or decimination of the figs or more or the figs of the	- must be a proper al rounded to 3sig runcated to 4 figs	
		their	$x = \frac{1}{4}$ oe	B1ft	strict ft ; <i>x</i> must be correctly attributed		
5	(i)	1-20	$0x + 160x^2$	B2, 1, 0	-1 each error		
					if B0 then M1 for seen; may be unservice $1, 5(-4x), \frac{5 \times 2}{2}$	r 3 correct terms simplified e.g. $\frac{4}{4}(-4x)^2$	
	(ii)	a+(t)	heir - 20) = -23 soi	M1	condone sign err <i>their</i> –20 from (i	ors only; must be)	
		a = -	3	A1	validly obtained		
		b + (t	heir - 20)a + (their 160) = 222 soi	M1	condone sign err their -20 and the their a if used	ors only ; must be <i>rir</i> 160 from (i) and	
		<i>b</i> = 2		A1	validly obtained		

	www.dynamicpapers.com							
	Page	5	Mark Scheme	Syllabus	Paper			
			GCE O LEVEL – May/June 20	14	4037	22		
6	(a) (i)	1		B1				
	(ii)	x = -	1 or -2	B1 + B1	as final answers			
	(b)	$\frac{\log_3 1}{\log_3 0}$	$\frac{5}{a}$ seen or implied	B1*	may be implied b $2\log_3 15 - \log_3 5$	у		
		2 log	$_{3}15 = \log_{3}15^{2}$ seen or implied	B1				
		log ₃ 1	$15^2 - \log_3 5 = \log_3\left(\frac{15^2}{5}\right)$	B1dep*	not from wrong w	vorking		
		100.4	45 cao	R1	must be 45 not e	$\frac{225}{2}$.		
		1053		DI	must be 45 not e.	^{g.} 5 '		
					with no wrong wo	orking seen		
7	(i)	$x^4(3e$	$(e^{3x}) + 4x^3 e^{3x}$ isw	B1 + B1	each term of the s be a sum of two t	sum correct; must erms		
	(ii)	$\frac{1}{2+c}$	$\frac{1}{\cos x} \times (-\sin x)$ isw	B2	or B1 for $\frac{1}{2 + \cos k}$ and <i>k</i> a constant	$\frac{1}{x} \times (k \pm \sin x)$		
	(iii)	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{s})$	$(in x) = \cos x soi$	B1				
		$\frac{\mathrm{d}}{\mathrm{d}x}(1)$	$(+\sqrt{x}) = \frac{1}{2} x^{-\frac{1}{2}}$ soi	B1				
			$\frac{\sqrt{x}}{their\cos x - \left(their\frac{1}{2}x^{-\frac{1}{2}}\right)\sin x}{\left(1 + \sqrt{x}\right)^2}$ isw	B1ft	for correct form of their $\cos x$ and the	of quotient rule ft eir $\frac{1}{2}x^{-\frac{1}{2}}$;		
					allow correct use chain rules to obtain $x\left(-\left(1+\sqrt{x}\right)^{-2}\right)$ $\cos x\left(1+\sqrt{x}\right)^{-1}$ or	of product and ain $\times \frac{1}{2} x^{\frac{1}{2}} +$		

					w.dynamicpapers.com	
	Page	6	Mark Scheme	Syllabus	Paper	
			GCE O LEVEL – May/June 20 [°]	14	4037	22
				1	1	
8		Subst equat	itution of either $x - 5$ or $y + 5$ into ion of curve and brackets expanded	M1	condone one sign equation of curve brackets; condon BUT $x - 5$ or $y +$	error in either or expansion of e omission of $= 0$, 5 must be correct
		$2x^{2}$ -	$-8x - 10[= 0]$ or $2y^2 + 12y[= 0]$ obtained	A1		
		Solvi	ng their quadratic	M1	dep on a valid su	bstitution attempt
		(-1, -	-6) oe and (5, 0) oe isw	A1*+A1*	or A1 for correct coordinates or co coordinates	pair of <i>x</i> rrect pair of <i>y</i>
	$\sqrt{72}$		or $6\sqrt{2}$ cao isw	B1dep*		
9	(i)	[<i>y</i> =]	$\frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} (+c)$ oe	B2	or B1 for $(2x + 1)$	1/2+1
		10 =	$\frac{2}{6}(2(4)+1)^{\frac{3}{2}}+c$ oe	M1	for valid attempt slips e.g. omissio error	to find <i>c</i> ; condone n of power or sign
		$y = \frac{1}{2}$	$\frac{2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + c \text{ seen and } c = 1 \text{ or}$	A1	must have $y = \dots$ $f(x) = \dots$.; condone
	y =		$\frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + 1$ isw			
		$\int \left(\frac{1}{3}\right)$	$(2x+1)^{\frac{3}{2}}+1$ $dx = \frac{1}{15}(2x+1)^{\frac{5}{2}} + x(+const)$	B1 + B1	B1 for $(2x+1)^{\frac{3}{2}+1}$) 2 ,
		$\left[\frac{1}{2}\right]$	$(2r+1)^{\frac{5}{2}} + r^{1.5} =$	B1ft	B1 for $\frac{1}{15}(2x+1)$ B1 ft <i>their</i> c from $c \neq 0$) ² 1 (i) provided
		$\begin{bmatrix} 15 \\ 1\\ 15 \end{bmatrix}$	$2(1.5)+1)^{\frac{5}{2}}+(1.5)\left]-\left[\frac{1}{15}(2(0)+1)^{\frac{5}{2}}+0\right]$	M1	for a genuine atter – F(0) in an atten <i>their y</i> ; if their F(least their F(1.5)-	The second seco
		$\frac{107}{30}$	be isw	A1	as long as their <i>c</i> if decimal 3.57 or e.g. 3.566	is not numerical. r more accurate

www.dynamicpapers.com					pers.com
Page	7	7 Mark Scheme		Syllabus	Paper
		GCE O LEVEL – May/June 20	14	4037	22
	1		1	1	
10 (i)	Taking logs of both sides		M1	any base; must b correct statement	e an explicitly t
	$\log y = \log A + x \log b$		A1	correct form; any from incorrect m	y base; no recovery tethod steps
(ii)	<i>b</i> : aw	rt 3 to one sf isw or awrt 4 to one sf isw	B2	or M1 for $b = e^{t}$ their gradient mu evaluated as rise.	^{their gradient} soi; ust be correctly /run
	<i>A</i> : aw	rt 0.5 to one sf	B2	or B1 for $A = e^{-0.6}$	
				or SC1 for $A = e$ an awrt 0.7)	$e^{-0.3} = 0.7$ (giving
(iii)	Evide	ence of graph used at $\ln y = 5.4$ soi	M1	or $\frac{220}{their 0.5} = (th)$	eir4) ^x
				or 5.39= <i>their</i>	(1.4)x + their - 0.6
				or $\ln(220) = x \ln(th)$	eir4) + ln($their0.5$)
	awrt -	4.4 to two sf	A1		

WWW.	dynamicpa	pers.cor

www.dynamicpaper					pers.com
Page	8 Mark Scheme			Syllabus	Paper
		GCE O LEVEL – May/June 20 ⁻	14	4037	22
	1			I	
11 (i)	f(x)	$> 3 \text{ or } [f(x) \in](3,\infty)$	B 1	condone $y > 3$	
(ii)	<i>x</i> + 1	$=2^{y}$	M1	or $y + 1 = 2^x$	
	$f^{-1}(x) = \log_2(x+1)$		A1	mark final answe	er
				or $\log_2(y+1) = x$	x and
				$f^{-1}(x) = \log_2(x +$	- 1)
				or for $f^{-1}(x) = \frac{lo}{dx}$	$\frac{\log(x+1)}{\log 2}$ (any base
				for this form)	5
	Domain $x > 3$		B1ft	ft their range of mathematically winterval	f provided valid inequality or
	Range	e $f^{-1}(x) > 2$	B 1	condone $f(x) > 2$	or $y > 2$
(iii)	$2^{x}(2^{x})$	(-1) oe isw	B 1	e.g. $(2^x - 1)^2 + (2x - 1)$	
				or $2^{2x} - 2 \times 2^{x} +$	$1 + 2^{x} - 1$
	$2^{x}(2^{x})$	$(-1)=0$ leading to $2^x = 0$, impossible or	B1	or $2^x = 0$ which of gf	is outside domain
	$2^{x} = 1$	$1 \Longrightarrow x = 0$	M1	or	
				$\begin{bmatrix} 2^{x}(2^{x}-1)=2^{2x}\\ 2^{2x}=2^{x}\end{bmatrix} \Rightarrow x=$	$-2^{x} = 0$ 0
	0 is n soluti	ot in the domain (and so $gf(x) = 0$ has no ons)	A1		

	www.dynamicpapers.com				
Page 9		Mark Scheme	Syllabus	Paper	
		GCE O LEVEL – May/June 20 ⁴	14	4037	22
	1				
12 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$3x^2 - 18x + 24$	B 1		
	Solvi	ng their $3x^2 - 18x + 24 \ge 0$			
	by fac comp	ctorising or quadratic formula or leting the square	M1	attempt at differentiation resulting in quadratic expression with two terms correct; allow = or \leq or $<$ o $>$ or \geq 0 omitted here.	
	<u> </u>		4.1		
	Critic	al values 2 and 4 ~ 2		A0 if courious of	tampt to combine
	$x \le 2, x \ge 4$		AI	mark final answe	er
(ii)	Evalu	hating their $\frac{dy}{dx}$ at $x = 3$	M1		
	Use o	of $m_1m_2 = -1$ to get $m_{normal} = -\frac{1}{their(-3)}$	M1	must be explicit s gradient of norms equation	statement of al ; may be seen in
	y = 13	3 soi	B1		
	y-th	heir 18 = $\left(their\frac{1}{3}\right)(x-3)$ or			
	y = t	<i>heir</i> $\frac{1}{3}x + c$ and $c = their 17$ isw	A1ft	ft <i>their m</i> provide attempt at m_{normal} m = their m.	ed a genuine ; no ft if
				tangent	
	P(0, 1)	17) cao	B 1		