UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/21

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	WWW	.dynamicpap	ers.com
Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	4024	21

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
•	• 1• 1

soi seen or implied

Qu	Answers	Mark	Part marks
1	(a) 3.64	2	M1 for 10tan20 oe
	(b) 8.24 – 8.28	2ft	M1 for 10(tan50 – tan20) oe
	(c) 24.2, 24.3	3ft	M1 for $(PC =) \frac{10}{\cos 20}$ oe (= 10.64) and M1 for their (a) + 10 + their PC
2	(a) $0 -\frac{7}{3}$ oe isw	2	B1 for one correct
	(b) $x = 1$ $y = -\frac{1}{2}$ oe	3	B2 for one correct www or M1 for reaching such as hx = 11, 11x = k, or py = -22, 44y = q
	(c) $\frac{6p+23}{(p-2)(2p+3)}$ final Ans	3	M1 for $\frac{5(2p+3)-4(p-2)}{(p-2)(2p+3)}$ soi and A1 for numerator $10p+15-4p+8$, condoning one sign error, and correct denominator seen at some stage
	(d) $\frac{q+1}{2q-1}$ final Ans	3	B1 for $(q-1)(q+1)$ seen and B1 for $(2q-1)(q-1)$ seen
3	(a) 60 alternate angles	1	
	(b) (i) 130	1	
	(ii) 310	1	
	(iii) 250	1ft	ft 360 – (their (a) + 50) or their (b)(ii) – their (a)
	(c) (i) Triangles equiangular	1	
	(ii) 51	3	M2 for $\frac{TQ}{85 - TQ} = \frac{3}{2}$ oe or M1 for $\frac{TQ}{2} = \frac{3}{2}$ oe
			TR 2

	www.dynamicpapers.com					ers.com
	Page 3 Mark Scheme: Teachers' version			on	Syllabus	Paper
		GCE O LEVEL – October/N	lovembe	er 2011	4024	21
4	(a) (i)	$\frac{1}{5}$ oe	1			
	(ii)	1 oe	1			
	(b) (i)	Correct completion	2	B1 after up to	o 3 errors	
	(ii)	(a) 0	1ft	ft from their	table	
		(b) $\frac{6}{25}$ oe	1ft	Both fts dep	on at least B1 sc	ored in (b)(i)
	(c) $\frac{1}{25}$		2	B1 for 5×5	× 5 soi	
5	(a) Con	nvincing explanation	1			
	(b) (i)	4(π)	1			
	(ii)	$\frac{3}{4}$	2ft	B1 for 3π		
	(c) (i)	75.4	2	M1 for $\frac{60}{360}$	$\times \pi \times (\text{their } r)^2$	
	(ii)	45.7	3	M1 for $\frac{1}{2} \times 6$ and M1 for their - their $\frac{1}{2} \times \pi$	$5 \times 6 \times \sin 60$ or $\frac{1}{2}$ 75.4 – their $\frac{1}{2} \times 3 \times 3$ evaluate	$\frac{1}{2} \times \pi \times 3 \times 3$ 6 × 6 × sin60 cd
6	(a) (i)	3:5	1			
	(ii)	9 600	1			
	(iii)	20 000	2	M1 for ÷ figs	s 1125 oe	
	(b) (i)	252.48	1			
	(ii)	110.8(0)	2	M1 for 395 +	-kx = 3054.20 s	oi
	(iii)	33.4	2	M1 for ÷ figs	s 2395 soi	
7	(a) (i)	Congruency case complete www	3	D1 for comm S1 for $AP=Bg$ or $AR=B$	non angle of 60 a Q=CR P=CQ	nd
	(ii)	(a) $\frac{16}{25}$ oe	1			
		(b) $\frac{3}{25}$ oe	1			

	www.dynamicpapers.com					ers.com		
Page 4			Mark Scheme: Teache	Scheme: Teachers' version			Paper	
				GCE O LEVEL – October/N	lovembe	er 2011	4024	21
Г								
		(b) (i) (ii)	An Eq	gle in a semicircle oe ual arcs or equal chords subtend ual angles at the circumference	1 2	B1 for <i>AB</i> =	= <i>BC</i>	
		(iii)	(a)	45	1			
			(b)	135	1ft	ft $3 \times$ their	(a)	
		(iv)	98		2	B1 for an a 53° or 127°	ngle correctly ider	ntified as 37°,
	8	(a) 8 (correc	et plots joined	2	P1 for at le	ast 5 correct plots	joined
		(b) 5.:	5 – 7.	5	2	M1 for a co	orrect tangent	
		(c) (i)	Co	rrect line	2	L1 for corr with gradie	ect freehand line of $ent - 1$ or intercept	or a ruled line t 2
		(ii)	1.3		1ft			
		(iii)	B =	= 4 C = 5	3	B2 for one	correct www or	
						M1 for 2 <i>x</i> -	$-\frac{5}{2x} = 2 - x \operatorname{soi}$	
		(d) (i)	Co	nvincing demonstration	1			
		(ii)	Co	rrect completion of graph	1			
	9	(a) 12	2 wo:	rking seen www	4	M1 for sin. M1 for sin. A1 for 58 c B1 for 180	$\frac{ABC}{11} = \frac{\sin 25}{5.5} \text{ an}$ $ABC = \frac{11 \sin 25}{5.5} \text{ s}$ $\frac{11 \sin 25}{5.5} \text{ s}$ $- \text{ their 58}$	d further oi and
		(b) (i)	Co	rrect equation derived www	3	M2 for $(12^2) = x^2 + 0$ or M1 for $(12^2) = x^2 + 0$	$(5+x)^2 - 2x(5+x)^2 - (5+x)^2 + 2x(5+x)^2 + 2x(5+x)^$	x)cos120 x)cos120
		(ii)	4.2	76 and –9.276 final answer	4	B3 for one corrected or B1 for $p = -$ B1 for $q =$ or B1 for $\left(x + \frac{551}{12}\right)$	correct or both no -15 and $r = 6$ and 1653 or $\sqrt{q} = 40$. $+\frac{5}{2}$) ⁽²⁾ and = 45.916 or 6.776	t or wrongly 657 6

	WWW	.dynamicpap	ers.com
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	4024	21

	(iii) 93	1ft	ft from their positive root in (ii)
10	(a) Correct histogram	3	H2 for at least 4 correct columns or H1 for 1 correct column
			 For wrong or no vertical scale award SC2 for all heights correct and all widths correct SC1 for all heights correct or all widths correct
	(b) (i) 35 65 100 128	1	
	(ii) Correct curve	3	P2 for 7 correct ft plots orPC2 for 4 correct ft plots and curve orP1 for 4 correct ft plots
	(c) (i) (51)	1ft	
	(ii) (10)	2ft	B1 for reading from the graph at 105
	(d) (16.5)	2ft	B1 for reading from the graph at 30
11	(a) (i) (a) (-2,3)	1	
	(b) (-3,2)	1ft	
	(c) (-3,2)	2	B1 for one coordinate correct
	(ii) (a) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	1	
	(b) M _y	1	
	(b) (i) 5	1	
	(ii) 5	2	B1 for $\sqrt{(4-7)^2 + (4-8)^2}$
	(iii) (a) (0, 2)	2	M1 for appropriate perpendicular bisectors
	(b) 307	1	