UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the November 2005 question paper

4024 MATHEMATICS

4024/02 Paper 2 maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	1 Mark Scheme S		Paper	
	GCE O Level – November 2005	4024		2
1	Nonsense in one part may be used to carn M marks in any other part of the Throughout accept equivalent complete methods and decimal angles without sign, but degree sign essential if answer in degrees and minutes			
(a)	ABO - 90° with reason	B	1	
(b) (sin OAB = 6/13 (= 0.4615.) or OAB = 37.48, or seen (leads to OAB = 27.5.) AG 	BI	1	
6	(ii) <u>(5</u> han 27.5	MI		
	28.8 to 28.9 (cm)	A	2	
(iii) 2(their AC)sin27.5 or 2X15cos27.5	MZ		
	or EPC =2[90 - 27.5] (=125) and $\sqrt{\{15^2 \Rightarrow 15^2 + 2x 15x 15 \cos(\text{their } 125)\}}$ (M2) 26.55 to 26.65 (cm)	At	3	
2 (a)	(t =) 2.%, 2.33 or better	B2	2	t
2 (a)	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen			
2 (a) (b)	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen $x = -2.5$ or $-2\sqrt{2}$ and $y = 17$	B2 B2	2	
	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen			
	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen $x = -2.5$ or $-2\frac{1}{2}$ and $y = 17$ After B0, allow B1 for one value found with no errors			
	After B0, allow B1 for t = 7/3 or 2.3 or 3 or for 3t = 7 seen x = -2.5 or - 2½ and y = 17 After B0, allow B1 for one value found with no errors nr allow M1 for correct method to eliminate one variable			
(6)	After B0, allow B1 for t = 7/3 or 2.3 or 3 or for 3t = 7 seen x = -2.5 or - 2½ and y = 17 After B0, allow B1 for one value found with no errors nr allow M1 for correct method to eliminate one variable (reaching such as 4y = k, ky = 68, 8x = k or kx = -20)	в2		
(6)	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen $x = -2.5$ or $-2\sqrt{2}$ and $y = 17$ After B0, allow B1 for one value found with no errors nr allow M1 for correct method to eliminate one variable (reaching such as $4y = k$, $ky = 68$, $8x = k$ or $kx = -20$) (y + 2)(y - 2) sol	B2 B1		
(6)	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen $x = -2.5$ or $-2\sqrt{2}$ and $y = 17$ After B0, allow B1 for one value found with no errors or allow M1 for correct method to eliminate one variable (reaching such as $4y = k$, $ky = 68$, $8x = k$ or $kx = -20$) (y + 2)(y - 2) soli (3y + 2)(y + 2) soli	82 81 81	2	
(6)	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen $x = -2.5$ or $-2\sqrt{2}$ and $y = 17$ After B0, allow B1 for one value found with no errors nr allow M1 for correct method to eliminate one variable (reaching such as $4y = k$, $ky = 68$, $8x = k$ or $kx = -20$) (y + 2)(y - 2) sol (3y + 2)(y + 2) sol $3y \pm 2$ obtained with no errors seen	82 81 81	2	
(b) (c)	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen $x = -2.5$ or $-2\sqrt{2}$ and $y = 17$ After B0, allow B1 for one value found with no errors or allow M1 for correct method to eliminate one variable (reaching such as $4y = k$, $ky = 68$, $8x = k$ or $kx = -20$) (y + 2)(y - 2) sol (3y + 2)(y + 2) sol $\frac{3y + 2}{y - 2}$ obtained with no errors seen y - 2	82 81 81 81	2	
(b) (c)	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen x = -2.5 or -2.4 and $y = 17After B0, allow B1 for one value found with no errorsor allow M1 for correct method to eliminate one variable(reaching such as 4y = k, ky = 68, 8x = k or kx = -20)(y + 2)(y - 2)$ sol (3y + 2)(y + 2) sol 3y + 2 obtained with no errors seen y - 2 Collect terms $x \cdot y \cdot 2x + yx = 2f - 3h$	В2 В1 В1 В1 М1	2	

Page	2	Mark Scheme	Sy	llabus	Paper
		GCE O Level – November 2005		024	2
			-		1
3 (a)	(i) (DCA =) 90" (angle in se	micircle)	Br		
1	ii) (DAC =) 34° or 124-11	seir (i)√ (angle sum of triangle)	B1	1 1	
1	iii) (CBA =) 124°	(opposite angles of cyclic quad)	B)		
	(iv) (AEB [=ADB] =) 28"	(ingles in same segment)	BI	4	
	Lack of reason loses B1 on	first occasion only			
():)	EBD - 28*	(alternate angles) Reason needed	Bi		1
	Deduces BDX or BDA = I	BD			
	And hence triangle BDX is	isosceles indep	81	2	
(1)	(ABE=) 62*		BI	£.	10
(d)	Convincingly shows X is th	te centre of the circle	BI	1	
_	e.g. Deduces triangle Ai	BX is isosceles, so $AX = BX = DX$			
4 (a)	Correct, labelled, diagram a After B0, allow B1 for dia	representing 4, 7, 6, 5, 2, 0., 1 agram without labels	B2	2	
	or labelle	ed diagram with m least 4 values correct			
(6)(i) (Median =) 2		BI		
	i) (Mode -) 1		BI		
	ii) (Mean =) 1.92 or 48/2	5 or	BI	3	
(c)	_K . 0.2 or 20%		BIA	1	
	5k V		-		
(d)	_k_, 0.04 or 4%		B2	2	
	25k				
		, 0.02 or 2% or _24, 0.0384 or 3.84%			
	50k	625			
(e)	Uses 23 6 cars or total min	nber of cars (48)	MI		
	A , 0.25 or 25%		41	2	10
	4k				

Page	WWW.dyn 3 Mark Scheme S	Syllabu		Pape
	GCE O Level – November 2005	4024		2
				1
	Lists 5 different ways	8)		
0.E	on 4017 (1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2)			
	[. m. 4024, (10, 10, 10, 10), (20, 10, 10), (10, 20, 10), (10, 10, 20), (20, 20)]			
(1) Lists & different ways			
	or justifies it is 5 ways with 10 cents first + 3 ways with 20 cents first	1.2.2.1	2	
) a = 13.	BI	1.1	
	$b = 21$ or $8 + their (i) \int$	B2	8	
(ii)	z = x + y oc	BI	i	.0
6 (a)	24	BI	C	
	x			
(b)	ne	BI	1	
	x + 0.5			
(c)	$24 - 24 = \pm 2 \int^{x} \sin x dx$ so i oe, but must contain x in 2 terms	MI/		
	x x+0.5	1		
	Correct method to remove fractions,			
	e.g. $24(x+0.5) - 24x = \pm 2x(x+0.5) \int dx$	MI		
	(but must have contained x in 2 different denominators)			
	Obtain $2x^2 + x - 12 = 0$ AG	A1	3	
(d)	Formula For numerical $p \pm \sqrt{q}$, (not $\pm p$) seen or used,		1 1	
			1 1	
	Allow B1 for $p = -1$ and $\tau = 4$	B)		
	and B1 for $q = 97$ or $\sqrt{q} = 9.84$ sot	B1		
	Complete square Allow B1 for $(x + V_i)^2$ or $(x + V_i)$ or soi			
	and B1 for 97/16 or square roots such as 2.46 or 9.84			
	4			
	Final answers Allow B) for each of 2.212 and ~2.712 nww	82	4	
	or allow B1 for both 2.21 and - 2.71 seen			
	or allow B1 for both 2.2122, and -2.7122 seen			
(e)	Tarar =24 (= 10.8)	MI		
	their 2.212			
	10 minutes 50 to 52 seconds	AL	2	

Page 4	Mark Scheme		llabus	Paper	
	GCE O Level – November 2005		4024	2	
10. av. /				1	
7 (a) (i) ½ x 0.5 ² (- 0_5655) seen	M)			
1.520 to 1.5	30 (m²)	AT	2		
(ii) 2 x 2.2(2.5 -	3.6) (=26.84) oc soi	M			
Their 26.84	- their (i) - 1.9¥0.9 (= 23.604)				
Leading to 2	13.fr (m²) AG	AL	3		
(b) (i) Increased as	ea = 23.6 X1.12 oe (=26.43 or 26.44)	MI			
Number of	iles - their 26,4	indep M1			
	0.25*				
	= 422 to 424	-A1	4		
(ii) Number of !	soxes = their 423 (lending to 22)	MI			
	20				
Cost = \$3.	50 саю	A)	2		
(iii) Division by	120 soi	MI			
20 .15	r <u>100 y</u> 15 so)	MI			
120	120				
\$ 2.5		AL	3	12	

Page		S	/llabus	Pape	
	GCE O Level – November 2005		4024	2	
8	Nonsense in one part muy be used to earn M marks in any other part of	the avestion			
	Throughout accept equivalent complete methods and decimal angles wi	and the second			
	sign, but degree sign essential if answer is given in degrees and minutes				
(a) (i)	292*	BI	4		
1.0					
(6)	72 ² + 60 ² ± 2 x 72 x 60 cos 75 oc soi	MI			
	Correct formula simplification and a square root taken, seen or		11		
	implied by subsequent values	dep Mi			
	80.85 to 80.95 (m)	A2	4	1	
	After A0, allow A1 for 6547 or 11020 or 104.9 seen, (dep on first M	1))			
(iii)	<u>sin B</u> — <u>sin 75</u> soi	MI			
	60 their (0)				
	sin ABC = 60 sin 75 (= 0.7162.)	Mi			
	their (ii)				
	45.70 to 45.80°	AI	э		
(īv)	157.70 to 158 or (their (i) + their (iii) - 180) \checkmark	ву	1		
(b)	(Height of kite =) 72 tan 24 (=32,05)	MI			
	$\tan \alpha = \underline{\text{their height}}$ (= 0.534)	MI			
	60				
	28.05 to 28.15*	AL	8	12	
	Some possible answers				

Page 6	6 Mark Scheme	S	/llabus	Paper
~	GCE O Level – November 2005		4024	2
9 (a)	$\sqrt{(5^{0} + 12^{1})}$ or seen [leading to 13 AG]	BI	ī	
(b) (d)	α\$5\$\$13 soi (=65π = 2042)	MI		
	2 n 5 1 101 (= 50n = 157,1) int	iep Mi		
	Their 65π + their 50π + $k\pi$ 5^3 where $k = integer$ integer (provided all terms are areas)	lep MI		
	361.0 to 362.0 (cm ²)	AI	4	
(ii)	¹⁵ π 5 ² x (2. so) (-100π = 314.2)	MI		
	45n 57 soi (= 250 n /3 - 261.8) int	1.0.0		
	575.5 to 576.5 (cm ²)	AI	3	
(c)	Figs { $\pi 1.5^{\pm} X2$ } (= fig($9\pi /2$) = fig (4.14)	MI		
	Correct conversion, (using 1 000 000) in	iep M1		
	Fig their 14.14 in their 576	iep M1		
	24 500 to 24 600	AI	a.	12

Page	7	Mark Scheme	Syl	labus	Paper
		GCE O Level – November 2005		024	2
10					
	EF = x - 2			- U -	1
	BC = 100/x			1.1	
		- 5 or their (ii) - 5 🖍			
	All three corre		82	2	
		v B1 for any two correct ∫ answers	1		
(b)	y = (x - 2)()	00 - 5) convincingly leading to y = 110 - 5x - 200 AG	BI	1	
		x 3		r E	
(#)	40(.8)		BI	1	
(d)	All 7 points pl	ented \int (P1 for at least 5 of these \int)	P2		
	Smooth curve,	not grozsly thick, through all plotted points, of which at			
		leasa 5 are correct	CI	з	
(e)	Drawing tange	or at $x = 8$ and estimating <u>change in y</u> , ignoring sign	ML		
		change in x			
	- 1.60 to -2	.00 [Ignore support from Calculus]	AL	2	
(0.0	0 4.65 0 4.80) to (8.45 to 8.55)	R2	2	
	After R0, allo	ow R1 for either value			
) 6.20 to 6.40		XL		12

Page 8	Mark Scheme	S	ylla	bus	Paper	
-	GCE O Level – November 2005		402		2	
			-		- 1	
11						
Accept at	ich as b + - a flor b - a throughout.					
Only exp	ressions linear in a and/or b can score.					
(a) (i) (DO =)	1	1	51			
(ii) (AB =)	b - a	1.1	K.			
	~ ~	1	-1			
(iii) (DB -)	a + b	E	31	¥.		
(b) Triangle	DAB is equilateral, so length $OA = OB = AB$	F	ŧŧ.	1		
and a	→					
1000 000	AX = b		ł			
(p) (YX =) 3b	E	11	2		
475 B						
(ii) Points lie	on a straight line or		11			
(d) (XZ -)	1		11			
(0) (95 -1	2		14	1.1		
(e) YZ = 31	-3a or $ZY = 3a - 3b$		11			
14 Y						
Deduces	xz = yx = yz ,					
So sides a		dep E	11	2		
Alternati	ve : States XZ parallel OA and YX parallel OB so X 60"	0	81)			
	And length XZ - length YX so equilateral	dep (81)			
(0 1		3	41			
9						
After 0/2	2, allow B1 for 1 to 9, 1:9, 9, $\left(\frac{1}{3}\right)^2 \operatorname{or}\left(\frac{a}{3a}\right)^2$ seen					
0//	(3) $(3a)$	E	32	2	12	