CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4024 MATHEMATICS (SYLLABUS D)

4024/22 Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	S	/llabus	Paper
	Cambridge O Level – May/June 2015		4024	22

	Qu.	Answers	Mark	Part Marks
1	(a)	$\frac{17x+13}{6}$ cao final answer	2	M1 for $\frac{2(4x-1)}{6} + \frac{3(3x+5)}{6}$ or better oe
	(b) (i)	$\frac{1}{2}$ or 0.5 cao	1	
	(ii)	y = 1 final answer	1	
	(iii)	Line from (6, 1) to (4, 3)	1	
	(iv)	y = -x + 7 final answer	2	B1 for any equation with grad –1 and/or intercept 7
	(v)	(0, 6)	2	B1 for line from (2, 2) with <i>y</i> -intercept between 5 and 7 soi Or for correct (unsimplified) equation (y = -2x + 6)
2	(a)	27	1	
	(b)	Constant speed	1	
	(c)	0.08 or $\frac{2}{25}$ final answer	1	
	(d)	3 to 3.5	1	
	(e)	1500	2	M1 for $\frac{1}{2}(200 + 50)12$ Or B1 for $\Delta = 900$ or rectangle = 600 After 0 , allow SC1 for 1750
	(f)	27 cao	2	M1 for <i>their</i> (total distance ÷ total time) soi
3	(a) (i)	67.8	3	M1 for 15×10+45×15+75×11+105×7+135×5+165×2 i.e. 150+675+825+735+675+330 (=3390) B1 for ÷ 50 (independent of M mark)
	(ii)	$90 \le t < 120$	1	Or clear equivalent
	(b) (i)	100 and 76 and 48	2	B1 for 100 and 76, or for 48
	(ii)	Completed pie chart with at least one sector correctly labelled	1	
4	(a) (i)	72	1	
	(ii)	83	1	
	(iii)	108	1	
	(iv)	83	1FT	Their (ii)

Pa	ae 3	Mark Scheme Svilabus Paper					
Τα	geo	Cambridge O Level – May/June 2015			4024	22	
	(b) (i)	4 (π) cao	2	B1 for $\pi \times 6^2$ or for	$\frac{40}{360}$		
(ii) $12 + \frac{4}{3}\pi$ final answer 2 B1 for (<i>a</i> =) 12, or the second		for $(b =) \frac{4}{3}$					
	(iii)	8	1ft				
5	(a)	(±) 9.3(0) to 9.31	4	M2 for $BC^2 = 8^2 +$ Or M1 for $8^2 + 11^2$ B1 for 86.5 to 86.6	$11^2 - 2 \times 8 \times \pm (2) \times 8 \times 1$	11 cos 56 1 cos 56	
	(b)	122.2 to 122.3	3	M2 for (sin <i>ADC</i> = 57.8, or 58 Or M1 for $\frac{\sin ADC}{11}$	$\frac{11\sin 30}{6.5}, c$ $\frac{C}{6.5} = \frac{\sin 30}{6.5}$ of	or 57.7 to	
	(c)	45.7 to 45.71	4	B1 for 27.7 to 27.8 M1 for $\frac{1}{2} \times 11 \times 8$ or for 8 × sin 56 if $\frac{1}{2}$ M1 for $\frac{their \text{ stated}}{their \text{ aread}}$ or $\frac{their}{their}$ height <i>AD</i>	seen × sin 56 (= 2 using heights $\frac{area}{ABC} \times 100$ $\frac{C}{C} \times 100$	36.478)	
6	(a)	325	2	M1 for $\frac{250}{20500}$ or $\frac{2}{2}$ Or B1 for 82 seen	26650 20500		
	(b)	465 and 2.56 to 2.57	3	B2 for 465 <u>or</u> 2.56 Or M1 for 400 × 1.	to 2.57 seen 17 (468)		
	(c)	170	3	B2 for 420 or 144.5 Or M1 for 357 ÷ 0. or 357 – (250 × 0.8	5(0) 85 35)		

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4024	22

	SECTION B					
	Qu.	Answers	Mark	Part Marks		
7	(a) (i)	$f^{-1}(x) = \frac{3x-7}{2}$ oe final answer	2	M1 for $3y = 2x + 7$ or $3x = 2y + 7$ oe		
	(ii)	m = -14	2	M1 for $\frac{2m+7}{3} = \frac{m}{2}$ oe		
	(b) (i)	4, 4 and smooth correct graph drawn	3	B1 for 4 and 4 B1 for 7 correct plots		
	(ii)	(y =) 6.2 to 6.4	1			
	(iii)	line drawn and $x = -0.7$ to -0.8 x = 2.7 to 2.8	2	M1 for correct line drawn		
	(iv)	line drawn and $x = -2.3$ to -2.7	2	M1 for horizontal line crossing curve at intersection of $x = 3.5$ and their curve or for the line $y = -2.75$		
8	(a)	321	1			
	(b)	9.43 to 9.44	2	M1 for sin 39 = $\frac{y}{15}$ oe		
	(c)	19.3 to 19.31	2	B1 for $\cos 39 = \frac{15}{x}$ oe		
	(d) (i)	X marked 12cm from A on bearing of 141°	2	B1 for either a correct distance or bearing		
	(ii)	Correct region shaded	3	B1 for arc, min length 3 cm, radius 6 cm, centre <i>A</i> B1 for bisector of $\angle ABC$, min length 3 cm B1 for shading		
	(iii)	17.6 to 18.4 dependent on an acceptable <i>X</i> and <i>Y</i>	2	M1 for <i>Y</i> established at northern end of shading		
9	(a) (i)	$2x(2x^2-5y)$ final answer	1			
	(ii)	(3a+b)(3a-b) final answer	1			
	(b)	$m = \frac{5}{8}, 0.625$	2	M1 for $7 = 12 - 8m$ or $\frac{7}{4} = 3 - 2m$		
	(c) (i)	$h^{2} + (h + 7)^{2} = 23^{2}$ leading to correct rearrangement	2	M1 for $h^2 + (h+7)^2 = 23^2$		
	(ii)	$\frac{h}{2}$ (h + 7) oe isw	1			

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4024	22

(iii)	120 cao	1	
(iv)	12.4, -19.4	3	B2 for one correct solution, or for 12.38 to 12.40 and -19.38 to -19.40 Or if in form $\frac{p \pm \sqrt{q}}{r}$, B1 for $p = -7$ and $r = 2$ and B1 for $q = 1009$ or $\sqrt{q} = 31.7$ to 31.8
(v)	54.76 to 54.8	1FT	
10 (a) (i)	Rotation 90° anticlockwise about (1,1)	2	B1 for Rotation B1 for 90° anticlockwise and about (1,1)
(ii)	Correct triangle	2	B1 for two correct vertices
(iii)	Correct triangle	2	B1 for two correct vertices
(iv)	24	2	B1 for 4^2 soi or M1 for $\frac{1}{2} \times 12 \times 4$
(b)	2	1	
(c)	4	1	
(d)	Rectangle, Rhombus	2	B1 for one correct
11 (a) (i)	$\frac{7}{30}$ or 0.23 or better	1	
(ii)	$\frac{11}{15}$ cao	1	
(iii) (a)	All probabilities correctly placed	2	B1 for at least 8 correct
(b)	$\frac{308}{870}$ or $\frac{154}{435}$ or 0.354	2	M1 for $\left(their\frac{7}{30} \times their\frac{6}{29}\right) + \left(\frac{15}{30} \times their\frac{14}{29}\right) + \left(\frac{8}{30} \times their\frac{7}{29}\right)$
(b) (i)	Correct histogram	3	B2 for at least 3 correct bars Or B1 for at least 1 correct bar or correct frequency densities seen
(ii)	61 or 62	2	B1 for 6 or 7 seen
(iii)	10	1	