

Cambridge IGCSE

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME									
CENTRE NUMBER						NDIDATI MBER	E		

CHEMISTRY

0620/04

Paper 4 Theory (Extended)

For Examination from 2016

SPECIMEN PAPER

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is accredited for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 The following table gives information about six substances.

substance	melting point / °C	boiling point / °C	electrical conductivity as a solid	electrical conductivity as a liquid
Α	839	1484	good	good
В	-188	-42	poor	poor
С	776	1497	poor	good
D	-117	78	poor	poor
E	1607	2227	poor	poor
F	– 5	102	poor	good

(a)	Which substance could be a metal?	[4]
(b)	State all the substances that are liquid at room temperature?	[1]
(c)	Which substance could have a macromolecular structure similar to that of silicon(IV) oxide	e? [1]
(d)	Which substance could be propane?	[1]
(e)	Which substance could be sodium chloride?	[1]
	[Tota	

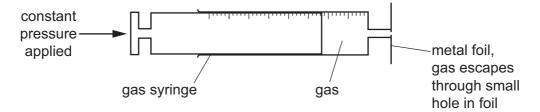
[Total: 6]

2 The table gives the composition of three particles.

particle	number of protons	number of electrons	number of neutrons
Α	15	15	16
В	15	18	16
С	15	15	17

(a)	Wh	at is the evidence in the table for each of the following?	
	(i)	Particle A is an atom.	
			[1]
	(ii)	A, B and C are all particles of the same element.	
			[1]
	(iii)	Particles A and C are isotopes of the same element.	
			[2]
(b)	(i)	What is the electronic structure of particle A ?	
			[1]
	(ii)	Is element A , a metal or a non-metal? Give a reason for your choice.	
			[1]

[2]


3	Kinetic theory	explains	the p	properties	of	matter	in	terms	of	the	arrangement	and	movement	of
	particles.													

(a)	Nitrogen is	a gas	at room	temperature.	Nitrogen	molecules,	N_2 ,	are	spread	far	apart	and
	move in a ra	andom	manner a	at high speed.								

(i)	Draw the electronic structure of a nitrogen molecule
	Show only the outer electron shells.

(ii) Compare the movement and arrangement of the molecules in solid nitrogen to those nitrogen gas.	in
	••••
	[3]
(b) A sealed container contains nitrogen gas. The pressure of the gas is due to the molecules the gas hitting the walls of the container. Use the kinetic theory to explain why the pressure inside the container increases when temperature is increased.	
	[2]

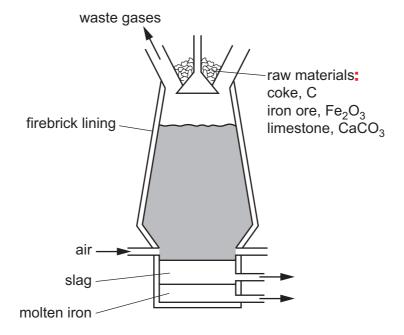
The following apparatus can be used to measure the rate of diffusion of a gas.

The following results were obtained.

gas	temperature /°C	rate of diffusion in cm³/min
nitrogen	25	1.00
chlorine	25	0.63
nitrogen	50	1.05

(c) (i) Explain why nitrogen gas diffuses faster than chlorine gas.

		[2]
(ii)	Explain why the nitrogen gas diffuses faster at the higher temperature.	
		[1]
	[Total:	10]


4	Chr	romiı	um is a transition element.	
	(a)	(i)	State two differences in the physical properties of chromium and sodium.	
				2
		(ii)	State two differences in the chemical properties of chromium and sodium.	- .
				2
	(b)	Chr	omium is used to electroplate steel objects. The diagram shows how this could be done.	
			lead anode object to be plated	
			chromium(III) sulfate(aq)	
		(i)	Give two reasons why steel objects are plated with chromium.	
			[:	2
		(ii)	The formula of the chromium(III) ion is Cr^{3+} and of the sulfate ion is SO_4^{2-} . Give the formula of chromium(III) sulfate.	ıe
			[1
		(iii)	Write the ionic half-equation for the reaction at the negative electrode (cathode).	
			[:	2
		(iv)	A colourless gas, which relights a glowing splint, is formed at the positive electrod (anode).	le
			State the name of this gas.	

www.dynamicpapers.com

7

(v)	During electroplating, it is necessary to add more chromium(III) sulfate but during copper plating using a copper anode, it is not necessary to add more copper(II) sulfate.
	Explain this difference.
	[2]
	[Total: 12]
	[Total: 12]

5 Iron is extracted from its ore, hematite, in the blast furnace.

Describe the reactions involved in this extraction.

Include one equation for a redox reaction and one for an acid/base reaction.
[

[Total: 5]

BLANK PAGE

6	Soluble salts	can be	made	using a	base	and	an	acid
---	---------------	--------	------	---------	------	-----	----	------

(a)	Complete this method of preparing dry crystals of the soluble salt
	${\it cobalt}(II) \ {\it chloride-6-water} \ {\it from the insoluble base cobalt}(II) \ {\it carbonate}.$

step 1 Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.
step 2
step 3
step 4
[4

(b) (i) 5.95g of cobalt(II) carbonate were added to 40 cm³ of hydrochloric acid, concentration 2.0 mol/dm³.

Calculate the maximum yield of cobalt(II) chloride-6-water and show that the cobalt(II) carbonate was in excess.

$$CoCO_3 + 2HCl \rightarrow CoCl_2 + CO_2 + H_2O$$

 $CoCl_2 + 6H_2O \rightarrow CoCl_2.6H_2O$

maximum yield:

	number of moles of HCl used =
	number of moles of $CoCl_2$ formed =
	number of moles of $CoCl_2.6H_2O$ formed =
	mass of one mole of $CoCl_2.6H_2O = 238g$
	maximum yield of $CoCl_2.6H_2O = \dots g$
	to show that cobalt(II) carbonate is in excess:
	number of moles of HCl used = (use your value from above)
	mass of one mole of CoCO ₃ = 119 g
	number of moles of CoCO ₃ in 5.95 g of cobalt(II) carbonate =[5]
(ii)	Explain how these calculations show that cobalt(II) carbonate is in excess.
	[1]
	[Total: 10]

7 Iodine reacts with chlorine to form dark brown iodine monochloride.

$$I_2 + Cl_2 \rightarrow 2ICl$$

This reacts with more chlorine to give yellow iodine trichloride. An equilibrium forms between these iodine chlorides.

$$ICl(I) + Cl_2(g) \rightleftharpoons ICl_3(s)$$

dark brown yellow

(a)	Wha	at do you understand by the term equilibrium?
	•••••	[2
(b)		en the equilibrium mixture is heated, it becomes a darker brown colour. gest if the reverse reaction is endothermic or exothermic. Give a reason for your choice.
		[1
(c)	The	pressure on the equilibrium mixture is decreased.
	(i)	How would this affect the position of equilibrium? Give a reason for your choice.
		It would move to the
		reason
		[1
	(ii)	Describe what you would observe.
		F.4

(d) Calculate the overall energy change for the reaction between iodine and chlorine using the bond energy values shown.

$$I_2 + Cl_2 \rightarrow 2ICl$$

Bond	Energy / kJ per mol
I-I	151
C <i>l</i> -C <i>l</i>	242
I-C <i>l</i>	208

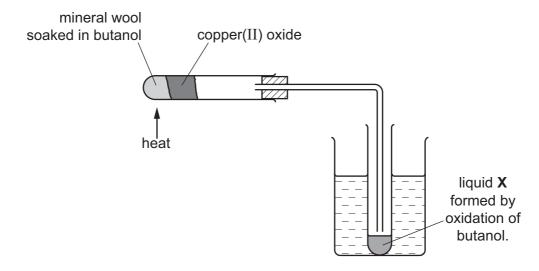
Show your working.

[3]

(e) Draw a labelled energy level diagram for the reaction between iodine and chlorine using the information in (d).

[2]

[Total: 10]

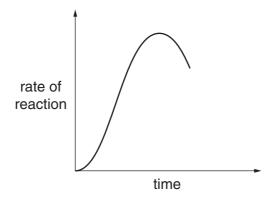

The	e alco	ohols form an homologous series.	
(a)	Giv	e three characteristics of an homologous series.	
	•••••		[3]
(b)	The	e following two alcohols are members of an homologous series and they are isomers.	
		$CH_3 - CH_2 - CH_2 - CH_2 - OH$ and $(CH_3)_2CH - CH_2 - OH$	
	(i)	Explain why they are isomers.	
			•••
			[2
	(ii)	Deduce the structural formula of another alcohol which is also an isomer of the alcohols.	se

[1]

8

[1]

(c) Copper(II) oxide can oxidise butanol to liquid \mathbf{X} , whose pH is 4.


(i)	Give the name of	another	reagent which	can oxidise	butanol.
-----	------------------	---------	---------------	-------------	----------

		[1]
(ii)	Which homologous series does liquid X belong to?	
		[1]
iii)	State the formula of liquid X .	

(d) The alcohol ethanol can be made by fermentation. Yeast is added to aqueous glucose.

$$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

Carbon dioxide is given off and the mixture becomes warm, as the reaction is exothermic. The graph shows how the rate of reaction varies over several days.

(i)	Suggest a method of measuring the rate of this reaction.

(ii)	Why does the rate initially increase?	[2]
(iii)	Suggest two reasons why the rate eventually decreases.	[1]

[Total: 14]

BLANK PAGE

1116	ere are two types or polymensation, addition and condensation.	
(a)	Explain the difference between these two types of polymerisation.	
		••••
		[2]
(b)	Some plastics, formed by polymerisation, are non-biodegradable.	
	Describe two pollution problems that are caused by non-biodegradable plastics.	
		••••
		[2

(c) The polymer known as PVA is used in paints and adhesives. Its structural formula is shown below.

$$\begin{array}{cccc} -\mathsf{CH}_2 - \mathsf{CH} - \mathsf{CH}_2 - \mathsf{CH} - \\ & | & | \\ & \mathsf{OCOCH}_3 & \mathsf{OCOCH}_3 \end{array}$$

Deduce the structural formula of its monomer.

[1]

(d) A condensation polymer can be made from the following monomers.

Draw the structural formula of this polymer.

[3]

[Total: 8]

			1,22	_							923	-				_				_				_					\neg		
		2	He	heliun	4	10	Ne	neon	20	18	Ā	argor	40	36	궃	krypto	84	54	Xe	xenor	131	98	を	rador	1						
	\					6	L	fluorine	19	17	10	chlorine	35.5	35	Br	bromine	80	53	Ι	iodine	127	85	Αt	astatine	1					71	3
	>					8	0	oxygen	16	16	S	sulfur	32	34	Se	selenium	79	52	Те	tellurium	128	84	Ро	polonium	1	116	^	livermorium	1	70	Υp
	>					7	z	nitrogen	14	15	۵	shosphorus	31	33	As	arsenic	75	51	Sp	antimony	122	83	B.	bismuth	509					69	T.
	^					9	O	carbon	12	14	:S	silicon	28	32	Ge	germanium	73	90	Sn	tin	117	82	Pb	lead	207	114	14	flerovium	Ĺ	89	<u>й</u> :
	≡					2	ш	poron	1	13	PΙ	aluminium	27	31	Ga	gallium	70	49	In	indium	115	81	11	thallium	204					29	유
														30	Zu	zinc	65	48	B	cadmium	112	80	Нg	mercury	201	112	ပ်	copernicium	J	99	Dy
														59	_D	copper	64	47	Ag	silver	108	62	Αn	plog	197	111	Rg		3	65	q.
9															z													darmstadtium	1	64	Б
Group	The state of the s													27	ပိ	cobalt	59	45	뫈	modium	103	2.2	Ä	iridium	192	109	Ĭ	meitnerium	1	63	Eu
		_	I	hydrogen	-									26	Fe	iron	26	4	æ	ruthenium	101	9/	SO	osmium	190	108	£	hassium	j	62	Sm
														25	Mn	manganese	55	43	ည	technetium	ĵ	22	Re	rhenium	186	107	В	bohrium	1	61	Pm
						3r	loc		lass						ပ်				Mo	Ш		74		tungsten			Sg		1	09	PN -
					Key	atomic number	atomic symbol	name	relative atomic mass					23	>	vanadium	51	41	g		93	73	Та	tantalum			o C	dubnium	1	59	<u>ፈ</u>
						atc	ator		relativ					22	F	titanium	48	40	Zr	zirconium	91	72	士	hafnium	178	104	፟ጅ	utherfordium	1	58	ő
										ı				21	Sc	scandium	45	39	>	yttrinm	89	57-71	lanthanoids			89-103	actinoids			25	Га
	=					4	Be	beryllium	6	12	Mg	magnesium	24	20	Ca	calcium	40	38	હ	strontium	88	99	Ва	barium	137	88	Ra	radium	1	_	
	_					3	:=	lithium		11	Na	_	23	19	¥	potassium	36	37	R _b		-	25	S	caesium	133	87	<u>ٿ</u>	francium	1		lanthanoids
		_														-															

	lanthanum	cenum	praseodymium	neodymium	praseodymium neodymium promethium samarium europium	samarinm	europium	gadolinium	terbium	dysprosium	holmium	erbinm	thulic
	139	140	141	144	Ī	150	152	157	159	163	165	167	169
	68	06	91	85	66	94	96	96	26	86	66	100	10′
actinoids	Ac	丘	Pa	⊃	dN	Pu	Am	C	Æ	ర	Es	Fm	Ĭ
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendele
	ľ,	232	231	238	Ĺ	I	Ĺ	ſ	E	Û	Ü	Ĺ	C
The volume of one mole of any gas is $24\mathrm{dm}^3$ at room temperature and pressure (r.t.p.)	e mole of	any gas	is 24 dm³	at room	temperatı	ure and p	ressure	(r.t.p.)					

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.