

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CHEMISTRY 0620/43

Paper 4 Extended Theory

October/November 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 11

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 11

Question	Answer	Marks
1(a)	oxygen	1
1(b)	hematite	1
1(c)	sulfur dioxide	1
1(d)	ammonia	1
1(e)	carbon monoxide	1
1(f)	sodium chloride	1
1(g)	carbon dioxide	1
1(h)	oxygen	1

Question	Answer	Marks
2(a)(i)	M1 breakdown of an ionic compound when molten or in aqueous solution	2
	M2 (using) electricity / electric current	
2(a)(ii)	M1 electron(s)	2
	M2 ion(s)	
2(b)(i)	M1 inert / unreactive	2
	M2 conducts electricity	

© UCLES 2018 Page 4 of 11

Question	Answer						
2(b)(ii)	observation a anode(+)	at anode(+)	observation at cathode(–)	name of product at cathode(–)		6	
	M1 green / yell bubbles	low M2 chlorine		M3 hydrogen			
		M4 oxygen	M5 pink / brown solid	M6 copper			

Question	Answer	Marks
3(a)	$[(64 \times 2) + 56 + 119 + (32 \times 4) =]$ 431	1
3(b)	[(119 / 151) × 100 =] 78.8 (%)	1
3(c)	SnO ₂ because the percentage of tin is larger in SnO ₂ or answer to (b) > 27.6 %	1
3(d)	$SnO_2 + 2C \rightarrow Sn + 2CO$	2
	M1 all formulae correct	
	M2 equation fully correct	
3(e)	M1 (→) $Fe^{2^+} + Sn$ OR $2Fe + 3Sn^{2^+} \rightarrow 2Fe^{3^+} + 3Sn$	2
	M2 (\rightarrow) Sn ²⁺ + Cu OR Sn + 2Cu ²⁺ \rightarrow Sn ⁴⁺ + 2Cu	
3(f)(i)	M1 glowing splint	2
	M2 relights / rekindles	

© UCLES 2018 Page 5 of 11

Question	Answer					
3(f)(ii)	M1 nitrogen dioxide / nitrogen(IV) oxid	le			2	
	M2 brown (gas)					
3(f)(iii)	$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$				1	
3(g)(i)	zinc acts as a barrier which prevents c	contac	ct between iron and water and air / oxygen		1	
3(g)(ii)	SUMMARY				3	
		M1	comparison of reactivity			
		M2	zinc loses electrons			
		М3	where electrons move to OR iron does not lose electrons			
	M1 zinc is more reactive than iron / steel ORA					
	M2 zinc loses electrons / zinc is oxidised					
	M3 electrons are transferred to iron / ir	ron is	not oxidised / iron does not lose electrons			

Question	Answer	Marks	
4(a)	M1 (Mol KOH =) $0.00125 / 1.25 \times 10^{-3}$	3	
	M2 (Mol H_2SO_4 =) 0.000625 / 6.25 × 10 ⁻⁴		
	M3 (Conc $H_2SO_4 = 0.03125 / 3.125 \times 10^{-2} \text{ (mol / dm}^3\text{)}$		

© UCLES 2018 Page 6 of 11

Question	Answer						
4(b)	SUMMARY				5		
		M1	repeat				
		M2	heat (liquid or solution should be implied)				
		М3	when to stop heating				
	M4 what to do after heating						
		M5	method of drying crystals (crystals or solid should be implied)				
	M1 repeat without indic	cator us	sing same volumes				
	M2 evaporate / heat / w	/arm / b	oil / leave in sun				
	M3 until most of the wa	ater is g	gone / some water left / saturation(point) / crystallisation point / evaporate	some of the water			
	M4 leave / (allow to) co	ool / allo	w to crystallise				
	M5 details of drying						
4(c)(i)	M1 bubbles / effervesce	ence / f	izzing		2		
	M2 solid or magnesium dissolves / solid or magnesium disappears						
4(c)(ii)	lilac flame				1		
4(c)(iii)	white precipitate				1		
4(d)(i)	$Mg(OH)_2 + H_2SO_4 \rightarrow M$	⁄lgSO₄ ·	+ 2H ₂ O		2		
	M1 formula of both Mg(OH) ₂ and MgSO ₄						
	M2 equation fully corre	ect					

© UCLES 2018 Page 7 of 11

Question	Answer	Marks
4(d)(ii)	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$	2
	M1 formula of ZnSO₄	
	M2 equation fully correct	
4(d)(iii)	$Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$	2
	M1 formulae of both Na ₂ CO ₃ and Na ₂ SO ₄	
	M2 equation fully correct	

Question	Answer	Marks
5(a)	M1 volume of gas	2
	M2 time	
5(b)	M1 rate decreases / reaction gets slower	3
	M2 concentration of acid decreases	
	M3 fewer collisions per unit time	

© UCLES 2018 Page 8 of 11

Question	Answer	Marks
5(c)	M1 particles have more kinetic energy	4
	M2 particles move faster	
	M3 more collisions per unit time	
	M4 more of the particles have energy greater than or equal to activation energy / more of the collisions have energy greater than or equal to activation energy	
	OR more of the particles have sufficient energy to react / more of the collisions have sufficient energy to react	
	OR A greater percentage or greater proportion or greater fraction of collisions are successful	
5(d)	ANY TWO FROM: • increase concentration of hydrochloric acid • decrease particle size of calcium carbonate / increase surface area of calcium carbonate • (add)catalyst	2

© UCLES 2018 Page 9 of 11

Question		An	swer		Marks
6(a)(i)	SUMMARY				6
	M	1 and M4	reactants		
	M	2 and M5	conditions		
	M	3 and M6	equation		
	FERMENTATION: M1 glucose / sucrose / starch / other named carbo	ohydrate car	score in equati	on as correct formula	
	M2 Zymase / Yeast / 37°C				
	M3 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$				
	HYDRATION: M4 Ethene and steam or water can score in equation as correct formulae				
	M5 H₃PO₄ (catalyst) / 300°C / 60 atm				
	M6 $C_2H_4 + H_2O \rightarrow C_2H_5OH$				
6(a)(ii)	 ANY TWO FROM:- carbohydrates are renewable fossil fuels are non-renewable lower temperature means fossil fuels conserted in lower temperature means lower energy cost hydration reaches an equilibrium meaning lower 	ts ORA	RA		2
6(a)(iii)	M1 solvent				2
	M2 fuel				
6(b)(i)	E				1

© UCLES 2018 Page 10 of 11

Question	Answer	Marks
6(b)(ii)	D	1
6(b)(iii)	В	1
6(b)(iv)	C	1
6(b)(v)	A	1

© UCLES 2018 Page 11 of 11