UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2006 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.dynamicpapers.com

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - OCT/NOV 2006	0620	3

1	(i) (ii) (iii) (iv) (v) (vi)	noble gas acidic oxide can be polymerised active component treatment of water product of respiration		argon carbon dioxide ethene oxygen chlorine carbon dioxide	
					[TOTAL = 6]
2	More (i) (ii) (iii) (iv) (v) (v)	than r A, B, D F C and A E	[1] [1] [1] [1] [1]		
					[TOTAL = 6]
3	(a)	limes	tone or marble or cha	alk or coral or calcite or aragonite	[1]
	(b)	(i)	100 56 ignore units in b	poth cases	[1] [1]
		(ii)	7.00kg is 1/8 of 56 1/8 of 100kg is 12.5 Give both marks for but penalise wrong	correct answer without explanation. Ignore missing units	[1] [1]
	(c)	(i)	Any reasonable exp Plants prefer soil ph Plants do not grow (To increase crop yie Any ONE	l about 7 (well) in acidic soils/plants grow better	[1]
			·	cidic soils plants die	
		(ii)		nate, pH cannot go above 7 ay by the rain/remains longer in the soil	[1]
			OR With calcium oxide,		[1] [1]
			It is washed away b	y the rain	[1]
		(iii)	disposing of acid wa	aking steel/iron, making cement, making glass, astes, removing sulphur dioxide from flue ilding, indigestion tablets, toothpaste, cosmetics etc	[1]
					[TOTAL = 9]
4	(a)	(i)	$CH_4 + 2O_2 = CO_2 +$ Not balanced [1] ON		[2]
		(ii)	carbon monoxide is COND it is poisonou NOT incomplete cor	JS	[1] [1]
	(b)		s to form sulphur diox ment about acid rain/l	ride lung disease e.g. bronchitis	[1] [1]

www.dynamicpapers.com

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - OCT/NOV 2006	0620	3

	(c)	(i)	Transition	elements/metals	or d block elements	;			[1]
		(ii)			ed into carbon dioxide oxide and water (by re		h the c	xygen)	[1] [1]
									[TOTAL = 9]
5	(a)	(i)	iron						[1]
		(ii)	advantage explanatio		mperature favours th	ne exotherr	nic rea	ction	[1] [1]
	(b)	(i)	•		n or used to make m	ore ammo	nia		[1]
	(-)	(-)	NOT just r						[.1
		(ii)	It has the I	highest boiling po	pint				[1]
	(c)	(i)	CO ₂ + 2NI Not balance	$H_3 = CO(NH_2)_2 + ced [1]$	H ₂ O				[2]
		(ii)	Any comm nutrient NOT soil p		ficiency of PK/or ONI	LY provide	s Nitro	gen as a	[1]
	(d)	Correct diagram for urea one error ONLY [2] two errors ONLY [1] three errors 0						[3]	
		unce	CITOIS 0						
		unee							[TOTAL = 11]
6	(a)			copper	iron	sulphur			[TOTAL = 11]
6	С	composi		copper (4.80)	iron (4.20)	sulphur 4.8	[1]		[TOTAL = 11]
6	c m n	composi mass/g number	ition by						[TOTAL = 11]
6	c m n o	composi mass/g number of atoms simplest	of moles	(4.80)	(4.20)	4.8	[1]		[TOTAL = 11]
6	c m n o	composi mass/g number of atoms simplest of atoms	of moles mole ratio	(4.80) 0.075	(4.20) 0.075	4.8 0.15	[1]		[TOTAL = 11]
6	c m n o	composi mass/g number of atoms simplest of atoms	of moles mole ratio mole ratio mole ratio mule ratio mule ratio	(4.80) 0.075 1 mula is CuFeS ₂ pper/blister coppo	(4.20) 0.075	4.8 0.15 2	[1]		[3]
6	c m n o s	composi mass/g number of atoms simplest of atoms	of moles mole ratio mole ratio mole ratio mule ratio mule ratio	(4.80) 0.075 1 mula is CuFeS ₂ pper/blister copper per phate or nitrate of	(4.20) 0.075 1 er/boulder copper etc	4.8 0.15 2	[1]		[3] [1] [1]
6	c m n o s	composi mass/g number of atoms simplest of atoms The e	of moles mole ratio mole ratio mole ratio mole ratio mole ratio mole ratio	(4.80) 0.075 1 mula is CuFeS ₂ pper/blister copper per phate or nitrate of	(4.20) 0.075 1 er/boulder copper etc	4.8 0.15 2	[1]		[3] [1] [1] [1]
6	c m n o s	composi mass/g number of atoms simplest of atoms The e (i) (ii) (iii)	of moles mole ratio mole ratio mole ratio mole ratio mole ratio mole ratio comparing cop copper sul Cu ²⁺ + 2e ⁻ Zinc per has delo	(4.80) 0.075 1 mula is CuFeS ₂ pper/blister copport phate or nitrate o = Cu calised electrons	(4.20) 0.075 1 er/boulder copper etcor chloride or contain	4.8 0.15 2	[1] [1] [1]	lphur	[3] [1] [1] [1] [1]
6	c m n o s o	composimass/gnumber of atoms simplest of atoms (i) (ii) (iii) (copposite of atoms	of moles mole ratio mole ratio mole ratio mole ratio mole ratio mole ratio comparities for impure cop (pure) cop copper sul Cu ²⁺ + 2e ⁻ Zinc per has delo lphur the ele pper there a h can slip	(4.80) 0.075 1 mula is CuFeS ₂ pper/blister copport phate or nitrate o = Cu calised electrons	(4.20) 0.075 1 er/boulder copper etcor chloride or contain	4.8 0.15 2	[1] [1] [1]	lphur	[3] [1] [1] [1] [1] [1]

www.dynamicpapers.com

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - OCT/NOV 2006	0620	3

7	(a)	(i)	greater initial slope or levels off later Twice final volume	[1] [1]
		(ii)	smaller slope same final volume	[1] [1]
	(b)		e particles in same volume/particles closer together ter collision rate	[1] [1]
			cules move faster ter collision rate	[1] [1]
			nolecules have more energy ore will have sufficient energy to react	[1] [1]
	(c)	(i)	glucose oxygen	[1] [1]
		(ii)	chlorophyll	[1]
				[TOTAL = 11]
8	(a)	(i)	biological catalyst	[1]
		(ii)	linkageO same unit as in glucose as on question paper that is rectangles	[1]
		(iii)	chromatography	[1]
	(b)	(i)	NHCO—linkage different units -NH and -CO on same monomer unit All three [2] two points [1]	[2]
		(ii)	amino acids	[1]
	(c)	(i)	propanol + ethanoic acid = propyl ethanoate + water reactants [1] products [1]	[2]
		(ii)	ester linkage correct rest of molecule correct	[1] [1]
		(iii)	bromine water fat 1 orange or yellow or brown to colourless fat 2 remains orange or yellow or brown Accept Potassium Manganate(VII) with corresponding colour changes	[1] [1] [1]
		(iv)	soap or sodium salts (of carboxylic acids)/sodium stearate alcohol/glycerol	[1] [1] [TOTAL = 15]

[6+6+9+9+11+13+11+15=80]