CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Abbreviations used in the Mark Scheme

- ; separates marking points
- / separates alternatives within a marking point
- **OR** gives alternative marking point
- R reject
- I ignore mark as if this material was not present
- A accept (a less than ideal answer which should be marked correct)
- COND indicates mark is conditional on previous marking point
- owtte or words to that effect (accept other ways of expressing the same idea)
- max indicates the maximum number of marks that can be awarded
- ecf credit a correct statement that follows a previous wrong response
- () the word / phrase in brackets is not required, but sets the context
- ora or reverse argument

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
1	$^{39}_{19}$ K ; 26p 26e 30n All three for 1 mark; $^{7}_{3}$ Li ⁺ numbers and symbol; charge +; 31p 28e 39n All three for 2 marks, any two for 1 mark; $^{79}_{34}$ Se ²⁻ numbers and symbol; charge 2 ⁻ ;	8	

Question	Answer	Marks	Guidance
2(a)	E; high melting point/mp/mpt OR high boiling point/bp/bpt; poor/non conductor (when liquid and/or solid);	3	I mpt/bpt above room temp
2(b)	B; (good) conductor when <u>solid</u> (and liquid);	2	A (good) conductor in any state / both states I high melting point/boiling point R low melting point/boiling point
2(c)	A; melting point/–7 (°C) is below room temperature/25 (°C)/RTP ora; boiling point/59 (°C) is above room temperature/25 (°C)/RTP ora;	3	I low melting point/boiling point/conductivity 25 (°C)/room temperature/RTP is in between -7 (°C) and 59 (°C) OR 25 (°C)/room temperature/RTP is between mpt and bpt would both score the 2 evidence marks
2(d)	C; high melting point/mp/mpt OR high boiling point/bp/bpt;		A melting point and boiling point both above room temp/25°C/RTP
	BOTH poor/non conductor when solid and good conductor when liquid OR molten/only conduct when liquid;	3	I conducts when aqueous or in solution I conducts in liquid due to free electrons

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
3(a)	M1 both correct charges of ions (calcium 2+ and nitrogen 3–);		Charges can be shown anywhere I missing symbols for nitrogen R wrong symbol of nitrogen anywhere
	M2 8 electrons around nitrogen (can be 3 dots and 5 crosses or 5 crosses and 3 dots or all dots or all crosses, but reject any other combinations of dots and crosses);		
	M3 Two electrons on the inner shell on any nitride ions/nitrogen atom: allow 2x or 2o once;		A if electron configuration of nitride is given as 2,8 or N is given as 2,5 I any missing inner shells as long as one is present
		3	<i>General guidance:</i> I electron configuration/symbol of calcium ion I formulae/stoichiometry Covalent can score only M3
3(b)(i)	regular/repeated/pattern/framework/periodic/ordered/alternating/ organised;		Ilayers
	(of)particles/atoms/molecules/ions/cations/anions;	2	A ionic/molecular/atomic I arrangement/bonding/properties
3(b)(ii)	M1 (so that ionic) charges balance or cancel/charge = 0/no charge/number of positive = number of negative charges/charge is neutral or neutralised;		
	M2 3(-) \times 2 = 2(+) \times 3;	2	A 6(+) = 6(-) I statements about electron transfer/valency/ ox state unless valency is referring to ionic charges e.g. valencies 3+ and 2- can get credit if used properly Ratio of ions is 3:2 therefore ratio of charges is 2:3 scores 2

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
3(c)	it (refers to Ca)/Calcium/Ca (atom) loses/gives/donates electrons/e/e⁻;		A half-equation with electrons on right-hand side R calcium ion/Ca ²⁺
	(these are) gained by nitrogen/N/N ₂ ;		A half-equation with electrons on left-hand side R nitride ion/N ³⁻ I numbers of electrons/charges on ions/oxidation state/valency if mentioned R reference to oxygen/hydrogen if there is a suggestion that oxygen/hydrogen are involved in the reaction I reference to oxygen/hydrogen if in general statement e.g. oxidation is gain of oxygen
	nitrogen/N/N ₂ is reduced so calcium/Ca is the reducing agent (these two statements could be split i.e. not in same sentence) OR reducing agents are electron donors/give/lose electrons		Electrons/e/e [−] move from calcium to nitrogen get marks 1 and 2
	OR calcium/Ca is oxidised (by electron loss) therefore calcium is the reducing agent (these two statements could be split i.e. not in same sentence);	3	A calcium/Ca/it is a reductant or calcium/Ca/ it reduces
4(a)	large surface area/large area of contact/large surface;		
	more (successful) collisions (between catalyst and gases or between reacting gases) OR more active sites OR faster reaction/increase rate/increase speed;	2	I activation energy Second mark must be comparative
4(b)	decrease temperature/temperature below 450 °C/quoted temperature below 450 °C; increase pressure/pressure above 200 atm/quoted pressure above 200 atm;	2	I comments about concentration I low temperature and high pressure. Both answers must be comparative I explanations

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
4(c)	decreased <u>temperature</u> would reduce rate/reaction slow <u>er</u> /too slow;		A takes long <u>er</u> I slow (unqualified)
	increased <u>pressure</u> expensive/uneconomic/safety risks/leaks/explosions/ yield or rate good enough at lower pressure/strong pipes needed/thick pipes needed/sturdy pipes needed/requires a lot of energy;	2	I answers that do not refer to decreased temperature and increased pressure e.g. it is too expensive unless this is linked with pressure
5(a)	method A; hydrochloric acid/HC1/hydrogen chloride solution;		hydrochloric acid/HC <i>l</i> can only score if written in the reagent space i.e. R hydrochloric acid/HC <i>l</i> in equation if reagent space is blank I hydrogen chloride (therefore 'hydrogen chloride + HC <i>l</i> ' would get mark 2 BOD) I nickel carbonate
	nickel carbonate + hydrochloric acid → nickel chloride + water + carbon dioxide;	3	A fully correct balanced chemical equation i.e. $NiCO_3 + 2HCl \rightarrow NiCl_2 + CO_2 + H_2O$ for the third mark R combination of words and formulae in the same equation for the third mark I concentration of acid for marks 2 and 3
5(b)	method C; any (aqueous/dilute/solution of soluble) bromide including potassium bromide/KBr, hydrogen bromide/HBr i.e. all bromides except silver, lead and mercury;		A correct formula of soluble bromide I lead nitrate
	$Pb^{2+} + 2Br^- \rightarrow PbBr_2$;	3	I state symbols A multiples

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
5(c)	method B; sulfuric acid/hydrogen sulfate/ H_2SO_4 ; 2LiOH + $H_2SO_4 \rightarrow Li_2SO_4 + 2H_2O$ species; balancing;	4	I concentration of acid for mark 2 I indicators / lithium hydroxide I state symbols A multiples

Question	Answer	Marks	Guidance
6(a)(i)	(Haber process makes) ammonia/NH ₃ ;		
	(ammonia converted into) fertilisers/nitrates/ammonium salts or names or formulae of examples e.g. ammonium nitrate/NH ₄ NO ₃ /ammonium sulfate/(NH ₄) ₂ SO ₄ /calcium nitrate/Ca(NO ₃) ₂ /urea/CO(NH ₂) ₂ ;	2	 A 2 marks for 'ammonia is a fertiliser' A ammonia is used to make sodium nitrate Haber process used to make fertilisers gets second mark only
6(a)(ii)	it (refers to sodium nitrate)/sodium nitrate would dissolve (in rain)/soluble (in water)/wash away/leach/drain off;	1	A reacts with water I reference to fertiliser R sodium reacts/dissolves A because they are not dissolved by rainfall (implication is in desert)
6(a)(iii)	potassium (is required by plants as well as nitrogen)/NP K ;	1	R comments about pH/better for soil/%N higher/reactivity of potassium I comments about what K does for plants e.g. combat disease
6(b)(i)	$2NaNO_3 \rightarrow 2NaNO_2 + O_2$ species; balancing;	2	A multiples I state symbols/word equation

Pa	ige 8	Mark Scheme	Syllabus	Paper
		Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
6(b)(ii)	(colour changes) from pink/purple; to colourless/decolourised;	2	I clear/discoloured/effervescence I brown fumes/brown gas NOTE: stays pink or purple gets first mark but turns purple or pink is 0
6(b)(iii)	the more reactive the metal the lower rate of decomposition/more difficult the decomposition/more stable the nitrate/more energy needed to decompose/decomposes at higher temperature ora;	1	A less (extent the) decomposition A reactive metals produce nitrates difficult to decompose ora i.e. comparatives not essential A the more reactive the metal the less it decomposes is acceptable because we can assume that <i>it</i> refers to the nitrate BOD A inverse relationship with further qualification A group 1/reactive metals produce nitrite (and oxygen) and less reactive metals produce oxide (+ NO ₂ + O ₂) (both required for mark) I less products (unqualified) R less products/metals decompose
6(c)(i)	(changes from) blue solid / blue crystals; black solid formed;		R precipitate A one mark out of the first two for changes from blue to black (without solid or crystals)
	brown gas/brown vapour/(pungent) smell;	3	I red/melt I water/steam/condensation given off I reference to glowing/burning splints/ colourless gas/effervescence I names/formulae

Page	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
6(c)(ii)	Avogadro('s) number/constant/ 6.02×10^{23} ; COND particles;		A any values from 6 to 6.023 ×10 ²³ A atoms/ions/molecules/electrons
	OR (the number of particles which is equal to the number of atoms in) 12g of carbon 12; COND atoms;		A one mark for reference to C12 A equivalent statement for any element or compound e.g. 32 grams of oxygen(1) COND
	OR the mass in grams which contains Avogadro('s) Number; COND particles;		$\frac{\text{molecules}}{\text{COND}}/O_2(1) \text{ e.g. 16 grams of oxygen (1)}$
	OR (the amount of substance which has a mass equal to) its <u>relative</u> formula mass/RFM/ <u>relative</u> atomic mass/Ar/ <u>relative</u> molecular mass/Mr/molar mass; COND in grams;		
	OR (the amount of substance which has a volume equal to) 24 dm ³ ; COND of a gas at RTP;	2	A different volumes under different conditions e.g. 22.4 dm ³ at STP or volumes in different units e.g. 24 000 cm ³ at RTP
6(c)(iii)	M1 (number of moles of CuO formed =) 0.03 ;		
	M2 (number of moles of Cu(NO ₃) ₂ .xH ₂ O in 7.26 g =) 0.03 ;		ecf same as M1
	M3 (mass of 1 mole of Cu(NO ₃) ₂ .xH ₂ O 7.26 \div 0.03 =) 242 (g); (mass of 1 mole of Cu(NO ₃) ₂ is 188g)		ecf 7.26 ÷ M2
	M4 the value of x = 3 ;	4	ecf M3 – 188 ÷ 18

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
7(a)(i)	living/organism or named example e.g. yeast/cells/plants/animals/part of animal or plant e.g. muscle/humans/micro-organisms;		A 'we/us' for 'humans'
	produces/releases or gain or obtain energy/exothermic/heat;		
	from food/named foodstuff/carbohydrate/named carbohydrate/sugar/ named sugar/glucose/nutrients;	3	I products/breathing/oxygen/anaerobic/ aerobic
7(a)(ii)	Any 2 from 3: carbon dioxide/CO ₂ ; water/H ₂ O; adenosine triphosphate/ATP;	1	I energy
7(a)(iii)	biological catalyst or protein catalyst;	1	R biocatalyst/living biological catalyst
7(a)(iv)	answer must include both measuring the time and measuring a relevant quantity; OR alternatively measuring the time taken for something to happen; alternatives to time are: units of time/apparatus to measure time/regular intervals/how long		Examples: A time taken for lime water to turn milky A time taken for bubbling to stop/gas stop being evolved A count bubbles per minute A measure temperature (change) with time R time taken for reaction to end
	examples of relevant quantities are: (Increase in/decrease in) amount/mass/volume/bubbles of carbon dioxide/bubbles of gas OR (Increase in/decrease in) mass of apparatus;	1	R measure carbon dioxide/gas with time (no reference to amount)
7(b)(i)	temperature increase/heat increase/warmer/high temperature/exothermic/ more yeast/yeast reproduces/yeast increases/yeast multiplies;	1	R yeast was added
7(b)(ii)	more yeast/yeast reproduces/increases/multiplies;	1	R yeast was added

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
7(b)(iii)	<u>all</u> glucose or reactant(s) reacted OR no glucose or reactant(s) left OR glucose or reactant(s) used up/finished/runs out/reacted completely/ fully reacted;		I glucose or reactants reacted/stopped reacting
	yeast (cells) dies OR enzymes denatured OR ethanol is toxic to yeast/ethanol kills yeast;	2	R enzyme dies/yeast denatures R yeast used up
7(c)	Any two from: fuel; OR petrol additive; OR solvent/tinctures; OR (making) perfumes; OR varnishes; OR preserving biological specimens/preserving food; OR essence/flavourings; OR antiseptic/kill bacteria (in medicine)/sterilizer; OR antitussive agent; OR antitussive agent; OR (in) disinfectant/hand sanitizer; OR to make esters/esterification; OR to make ether(s); OR to make amines; OR to make carboxylic acid(s)/vinegar/ethanoic acid; OR thermometers; OR alcohol lamp/spirit burners; OR any other suitable use;	2	I medicine (unqualified)/chemical feedstock

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0620	32

Question	Answer	Marks	Guidance
7(d)			I fractional distillation/distillation wherever mentioned
	cracking/crack;		I catalytic/thermal + other conditions
	(hexane to obtain) ethene/ C_2H_4 ;		Ethene / C_2H_4 can be given in either equation whether the equation is otherwise correct or not
	$C_6H_{14} \rightarrow C_2H_4 + C_4H_{10};$		I state symbols A multiples/other equations e.g. $C_6H_{14} \rightarrow 3C_2H_4 + H_2$ $C_6H_{14} \rightarrow 2C_2H_4 + C_2H_6$ $C_6H_{14} \rightarrow C_2H_4 + C_4H_8 + H_2$ A any correct equations in which carbon is produced e.g. $C_6H_{14} \rightarrow 2C_2H_4 + 2C + 3H_2$
	hydration (of ethene)/hydrate/hydrated or add(ition of) water/add(ition of) steam/addition;		A additional I conditions/react with water
	$C_2H_4 + H_2O \rightarrow C_2H_5OH;$	5	I C ₂ H ₆ O/state symbols A multiples