CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

_			www	v.dynamicpapers	.com
	Ра	ige 2			Paper
			IGCSE – May/June 2014	0620	33
1	(a)	car	bon dioxide (1)		[1]
	(b)	pro	pene (1)		[1]
	(c)	kry	pton (1)		[1]
	(d)	nitr	ogen (1)		[1]
	(e)	fluc	prine (1)		[1]
	(f)	sulf	fur dioxide (1)		[1]
	(a)	hvc	Irogen (1)		[1]
	(9)				
					[Total: 7]
2	(a)	par mo coll mo	/ three from: ticles have more energy (1) ve faster (1) lide more frequently (1) re particles have energy greater than E _a i dance: more colliding molecules have enough energy to a	react is worth (2)	[3]
	(b)	par	ticles move in all directions/randomly in both liquids and g	gases (1)	
			bonds/very weak forces between particles in gases (1) lecules can move apart/separate (to fill entire volume) (1)		
		bor	nds/forces/IMF between particles in liquids (1) lecules cannot move apart/separate (so fixed volume in li	quids) (1)	[3]
					[Total: 6]
3	(a)	(i)	enzymes (1)		[1]
		(ii)	reduces growth of microbes/rate of reproduction of microbes are dormant (1) fewer (enzymes) to decay food (1) OR enzymes less efficient at lower temperatures (1)	microbes is lower/	
			slower reaction rate (1)		[2]
	(b)	res	rect linkage (1) t of molecule correct and continuation shown (1) ner product is) water (1)		[3]

				w.dynamicpape	
	Page	3	Mark Scheme	Syllabus	Paper
	ph ligi ch ca	otosyr ht/pho loroph rbon c	IGCSE – May/June 2014 ee from: nthesis (1) otochemical (1) nyll/chloroplasts (1) dioxide and water needed (1) e and) oxygen (1)	0620	33 [3] [Total: 9]
4	(a) (i) (ii)	fract liqui any	t limestone/calcium carbonate (1) tional distillation (1) id air (1) two of the oxides, C, S, P and Si, mentioned (1) oon dioxide and sulfur dioxide escape/are gases (1)		[3]
		pho: pho: to fc	sphorus oxide or silicon(IV) oxide react with calcium sphorus oxide or silicon(IV) oxide are acidic and cal orm a slag or calcium silicate or calcium phosphate st have correct equation for one of the above reaction	cium oxide is basic ((1)	(1) [5]
	(b) (i) (ii)	mob the i	ce/rows/regular arrangement of cations/positive ior bile/free/delocalised/sea of electrons (1) rows of ions/ions can move past each other (1) out the metal breaking/bonds are not directional/no		[2]
	(iii)	carb	oon particles/atoms different size (1) vents movement of rows, etc. (1)		[2] [Total: 14]
5	hig gre	gher co eater y	action rate (1) ollision rate (1) yield or favour RHS (1) e favours products because it has lower volume/fewer	product molecules (1) [4]
	thi	s is th	emperature favour endothermic reaction (1) e back reaction/left hand side/reactants (1) /ield (1)		[3]
	(c) (i)	grea	ater surface area (1)		[1]
	(ii)	can	ease reaction rate (1) use a lower temperature to have an economic rate not decrease yield (by increasing temperature).	(1)	[2]

	•	
VANANAL ON	ynamicpapers.	$\sim \sim \sim$
$\lambda \lambda / \lambda \lambda $		1 1 11 11
		COLL

		www.dynamicpa	
Pa	age 4		Paper
(d)	only OR adc only OR incr	d water (1) ly ammonia will dissolve (1)	33 [2]
(e)	thire four all t two 117 840 bot	cond line $+3 \times 155 = +465$ rd line $-3 \times 280 = (-)840$ urth line $-3 \times 565 = (-)1695$ three correct (2) three correct (1) 70 + 465 = 1635 0 + 1695 = 2535 th numerically correct (1)	
	exo	othermic reaction with some reasoning (1)	[4]
			[Total: 16]
6 (a)	(i)	C and H <u>only</u> (1)	[1]
	(ii)	only single bonds (1)	[1]
	()		
(b)	(i)	C _n H _{2n+2} (1)	[1]
	(ii)	C ₁₄ H ₃₀ (1)	
		(14 × 12) + 30 = 198 (g) (1)	[2]
(c)	(i)	C_9H_{20} + 14 $O_2 \rightarrow 9CO_2$ + 10 H_2O (2)	[2]
(-)			[_]
	(11)	Volume ratio $C_xH_y(g) + O_2(g) \rightarrow CO_2(g) + H_2O(I)$ 20 160 100 all in cm ³ 1 8 5 mole ratio $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$	
		For evidence of method (1) for equation as above (2)	[3]
(d)	(i)	alkanes in petrol/fuel/solvent (1) alkenes to make alcohols/plastics/polymers/solvents (1) hydrogen to make ammonia/fuel/fuel cells, etc. (1)	[3]
	(ii)	a correct equation for example:	
		$C_{10}H_{22} \rightarrow C_8H_{16} + C_2H_4 + H_2 (1)$	[1]

		Mords Oak area	apers.com
Ра	ge 5	Mark Scheme Syllabus	Paper
		IGCSE – May/June 2014 0620	33
(e)	(i)	ight or lead tetraethyl/catalyst/high temperature (1)	I
	(ii)	CH_3 – $CHCI$ – $CH_3(1)$	
			[Total: 1
(a)	baux	tite (1)	
(b)	use 1000 elect	rolyte alumina/aluminium oxide dissolved in molten cryolite (1) cryolite to reduce mp/comparable idea/temperature of electrolyte 9 0°C (1)	00 to
	alum	rodes carbon (1) inium formed at cathode/ Al^{3+} + 3e $\rightarrow Al(1)$	
	oxyg	rodes carbon (1)	
(c)	oxyg anod	rodes carbon (1) inium formed at cathode/ Al^{3+} + 3e $\rightarrow Al(1)$ en formed at anode/ $2O^{2-} \rightarrow O_2$ + 4e (1)	
(c)	oxyg anod (i)	rodes carbon (1) inium formed at cathode/ Al^{3^+} + 3e $\rightarrow Al(1)$ en formed at anode/ $2O^{2^-} \rightarrow O_2$ + 4e (1) le burns/reacts to carbon dioxide/C + $O_2 \rightarrow CO_2$ (1)	
(c)	oxyg anod (i) (ii)	rodes carbon (1) inium formed at cathode/ Al^{3^+} + 3e $\rightarrow Al(1)$ en formed at anode/ $2O^{2^-} \rightarrow O_2$ + 4e (1) le burns/reacts to carbon dioxide/C + $O_2 \rightarrow CO_2$ (1) food containers/window frames/cooking foil/cars/bikes/drink cans (1)	