UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

11

maximum	minimum mark required for grade:				
mark available	А	С	E	F	

Grade thresholds for Syllabus 0620 (Chemistry) in the June 2005 examination.

58

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

30

16

Grade A* does not exist at the level of an individual component.

80

Component 3

June 2005

IGCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY Extended Theory

_			WWW	.dynamicpa	apers.com
	Pag	e 1	Mark Scheme IGCSE – JUNE 2005	Syllabus 0620	Paper 3
1	(a)	c k	larker or actual colours hlorine yellow, yellow/green promine orange, brown, brownish red podine black grey, purple	0020	<u>;</u> [1]
			<u>as, liquid, solid</u> Il three needed		[1]
		• •	colourless or (pale) yellow jas		[1] [1]
	(b)	Must	have a correct reagent otherwise wc = 0		
		yellov	chlorine water or bubble in chlorine gas w or orange or brown brown or grey crystals		[1] [1]
			ept colour that is darker than for bromide)		[1]
		off wi yellov	add (acidified) silver nitrate(aq) nite or pale yellow or cream <u>precipitate</u> or soluble in aq w <u>precipitate</u> insoluble in aqueous ammonia pitate essential then either colour or solubility in aqueou		ia [1] [1]
		pale	add lead nitrate(aq) yellow or off white or cream <u>precipitate</u> w <u>precipitate</u> insoluble in aqueous ammonia		[1] [1] [1]
			pt any test that could work – electrolysis, iron(III) salt ine, potassium dichromate, potassium manganate(VII)	etc.	
	(c)		$3Cl_2 = 2ICl_3$ aving either reactants or products correct ONLY [1]		[2]
	(d)	chlor CON	ne D lower M _r or lower density or lighter molecules or mole	ecules move f	[1] aster [2]
		OR	lighter or based on A _r MAX [1] smaller with no additional comment or sieve idea [0] N.B. a total of [3] not [2]		
					TOTAL = 12
2	(a)		$I_2 = Zn^{2+} + 2I^{-}$ aving either reactants or products correct ONLY [1]		[2]
	(b)		nc and sodium hydroxide white precipitate Ives in excess (only if precipitate mentioned)		[1] [1]
		Mark	nc and ammonia same results either first (sodium hydroxide or aqueous ammonia), ional [1] can be awarded for stating that the other has th	• •	

Page	e 2	Mark Scheme	/.dynamicpa Syllabus	Paper
		IGCSE – JUNE 2005	0620	3
(c)	(i)	zinc <u>and</u> a reason Do not mark conseq to iodine in excess		
	(ii)	final mass of zinc bigger or the level section higher or le gradient less steep or longer time or falls more slowly	ess zinc used u	qu
	(iii)	steeper gradient same loss of mass of zinc		
				TOTAL =
(a)	(i)	$CH_3-CH==CH_2$		
	(ii)	conseq to (i) correct repeat unit COND evidence of continuation		
	(iii)	monomer COND because it has a double bond or unsaturated or NOT addition	alkene	
(b)	(i)	to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate)	
	(ii)	because silver atoms have <u>lost electrons</u> OR oxidation number increased		
	(iii)	silver chloride		
(c)	(i)	name of an ester formula of an ester if they do not correspond MAX [1] Accept name - terylene for formula ester linkage and continuation If a 'fat' complete structure must be correct e.g. C ₁₇ H ₃₅ e Mark for formula only - [1]	etc.	
	(ii)	alcohol or alkanol NOT a named alcohol		
(d)	(i)	acid loses a proton base accepts a proton		
		OR same explanation but acid loses a hydrogen <u>ion</u> (and base gains hydrogen <u>ion</u> (1)	1)	
	(ii)	only partially ionised or poor hydrogen ion donor or poor NOT does not form many hydrogen ions in water or low ions NOT pH		

TOTAL = 15

					icpapers.com
	Page 3		Mark Scheme IGCSE – JUNE 2005	Syllabus 0620	s Paper 3
4	(a)	(i)	correct word equation (carbon dioxide and		[1]
-	(4)	(')	Accept correct symbol equation	watery	[.]
		(ii)	Must have a correct reagent otherwise we		[4]
			add (acidified) barium chloride(aq) or nitrat COND white precipitate	e or add banum ions	[1] [1]
			NOT lead(II) compounds		
		(iii)	low pH or universal indicator turns red(aq) pH 3 or less		[1]
	(b)	(i)	$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]		[2]
		(ii)	unpleasant smell or it is poisonous or wh	nen burnt forms acid ra	ain or forms sulphur
		()	dioxide or forms sulphuric acid NOT it is a pollutant		[1]
		(iii)	2H to 1S		
			COND 8e around sulphur atom 2e per hydrogen atom		
			THREE correct		[2]
			TWO from above [1] lonic structure = [0]		
	(c)	(i)	vanadium oxide or vanadium(V) oxide or v Must be correct oxidation state if one give		V ₂ O ₅ [1]
		(ii)	400 to 500° C		[1]
		(iii)	add to (concentrated) sulphuric acid NOT of COND (upon sulphuric acid) above then ac		[1] [1]
	(d)		as of one mole of $CaSO_4 = 136$		
			es of CaSO ₄ in 79.1g = 0.58 accept 0.6 es of H ₂ O in 20.9 g = 1.16 accept 1.2		[1] [1]
			seq x = 2 x given as an ir	nteger	[1]
					TOTAL = 16
5	(a)	(i)	A is glutamic acid		[1]
			B is alanine Accept names only, NOT R _f values		[1]
		(ii)	because acids are colourless or to make th or to show positions of the samples or dist		[1]
		(iii)	compare with known acids or reference sa Accept from colours of samples	mples or standards	[1]
		(iv)	amide linkage		[1]
			COND different monomers continuation		[1] [1]
			Accept hydrocarbon part of chain as boxes		[1]
			If nylon 6 then only one monomer [1] NOT	different monomers	

Page	e 4	Mark Schen	w.dynamicpa	Paper	
J	-	IGCSE – JUNE		0620	3
(b)	 correct structure as syllabus (box representation) correct linkageO continuation 				[1] [1]
	COII				L'.
(c)	(i)	$C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$ not balanced [1] Accept C_2H_6O			[2]
	(ii)	gives out <u>energy</u> or equivalent NOT heat N.B. a total of [1] not [2]			[1]
	(iii)	glucose used up or yeast 'killed' l NOT yeast used up	by ethanol NOT reactant use	ed up	[1]
	(iv)	oxidise alcohol to acid or to ethar or to carbon dioxide and water or if oxygen present aerobic resp or cannot have anaerobic respirat NOT it is anaerobic respiration, m	piration ition in presence of ox		[1]
	(v)	fractional distillation			[1]
	. ,				TOTAL = 15
6 (a)	(i)	bauxite			[1]
	(ii)	to reduce melting point or improv or as a solvent or reduce the wor	-		[1]
	(iii)	carbon dioxide or monoxide or flu	uorine		[1]
(b)	(i)	aluminium			[1]
	(ii)	solution goes colourless or coppe or a <u>brown solid</u> forms or blue co or bubbles NOT goes clear or copper formed	lour disappears		[1]
	(iii)	covered with an oxide layer			[1]
(c)	read	tion	no reaction		[1]
(-)		tion	reaction		[1]
(d)	(i)	$2Al(OH)_3 = Al_2O_3 + 3H_2O$ Not balanced [1]			[2]
	(ii)	Aluminium nitrate = aluminium only TWO correct products [1]	oxide + nitrogen dioxid	de + oxygen	[2]
					TOTAL = 12