

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

0620/22 **CHEMISTRY**

February/March 2018 Paper 2 Multiple Choice (Extended)

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO **NOT** WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

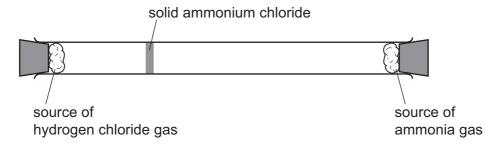
Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.

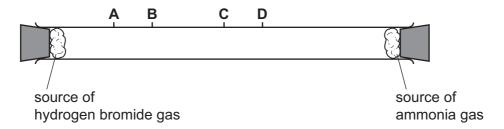
The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 15 printed pages and 1 blank page.



© UCLES 2018

1 Hydrogen chloride gas, HC*l*, reacts with ammonia gas, NH₃, to form solid ammonium chloride.

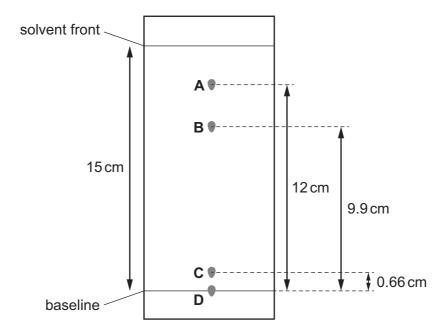

The apparatus is set up as shown.

After a few minutes, solid ammonium chloride forms where the two gases meet.

The experiment is repeated using hydrogen bromide, HBr, in place of hydrogen chloride.

How far along the tube does the solid ammonium bromide form?

2 Substance L melts at −7 °C and is a brown liquid at room temperature.


Which temperature is the boiling point of pure L?

- **A** −77 °C
- **B** -7° C to $+7^{\circ}$ C
- **C** 59 °C
- **D** 107°C to 117°C

3 Chromatography is done on a mixture containing a drug. The drug has an R_f value of 0.66.

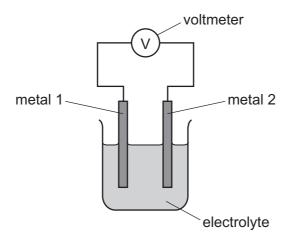
The diagram is **not** drawn to scale.

Which spot on the chromatogram represents the drug?

4 Caesium, Cs, is an element in Group I of the Periodic Table.

When caesium reacts it forms a positive ion, Cs⁺.

How is a caesium ion formed?


- **A** A caesium atom gains a proton.
- **B** A caesium atom gains an electron.
- **C** A caesium atom loses an electron.
- **D** A caesium atom shares an electron.
- 5 The structure of copper is described as a lattice of positive ions in a 'sea of electrons'.

Which statements are correct?

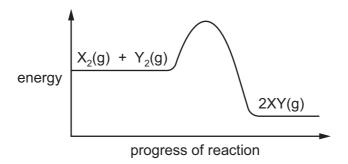
- 1 Copper has a high melting point because of the strong electrostatic attraction between the positive ions and the 'sea of electrons'.
- 2 Copper is malleable because the layers of atoms in the lattice can slide over each other.
- 3 Copper atoms can be oxidised to form copper ions by losing electrons.
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

6	Three statements about diamond, graphite and silicon(IV) oxide are listed.				are listed.				
		1	Diamor	nd a	nd graphite bot	th hav	ve giant coval	ent stru	uctures.
In silicon(IV) oxide, silicon and oxygen atoms are joined together by covale throughout the whole structure.						oined together by covalent bonds			
		3	Diamor	nd a	nd silicon(IV) o	oxide	have similar s	structur	es.
	Which statements are correct?								
	A	1, 2 and	d 3	В	1 and 2 only	С	1 and 3 only	D	2 and 3 only
7	The	e concen	tration of	f a h	ydrochloric aci	d solı	ution is 0.5 mc	ol/dm³.	
	Ho	w many r	moles of	hyd	rochloric acid a	are pr	esent in 25 cn	n ³ of th	s solution?
	A	0.0125		В	0.0200	С	12.5	D	20.0
8	A s	sample of	f an iron (oxid	e contains 50.4	1g of	iron and 21.6	g of ox	xygen.
	What is the empirical formula of the iron oxide?								
		FeO	•		FeO ₃		Fe ₂ O ₃	D	Fe ₃ O ₂
					·		- 0		-
9	A s	solution o	f copper	(II) s	sulfate can be	electr	olysed using	copper	electrodes or carbon electrodes.
	Which statements are correct?								
	 Using copper electrodes, oxygen gas forms at the anode. 					anode.			
	Using copper electrodes, copper atoms lose electrons at the anode.				ons at the anode.				
		3	Using o	arbo	on electrodes,	copp	er metal forms	at the	cathode.
		4	Using o	arbo	on electrodes,	copp	er ions gain el	ectron	s at the cathode.
	Α	1 and 2		В	1 and 3	С	2, 3 and 4	D	4 only

10 Pairs of metals are connected together to make a simple cell, as shown.

The table shows the reading on the voltmeter when different metals are used.

			met	al 2	
		beryllium	cerium	cobalt	manganese
	beryllium	0.00 V	+0.64 V	–1.57 V	-0.67 V
<u>a</u>	cerium		0.00 V	–2.21 V	-1.30 V
metal	cobalt			0.00 V	+0.90 V
	manganese				0.00 V


If metal 2 is more reactive than metal 1, the voltage measured is positive.

The greater the difference in reactivity of the metals, the larger the reading on the voltmeter.

What is the order of reactivity?

	most reactive			least reactive
Α	cerium	beryllium	cobalt	manganese
В	cerium	beryllium	manganese	cobalt
С	cobalt	manganese	beryllium	cerium
D	cobalt	manganese	cerium	beryllium

11 The energy level diagram for the reaction between X_2 and Y_2 to form XY gas is shown.

Which statement is correct?

- **A** Energy is released when X_2 and Y_2 bonds are broken.
- **B** Energy is needed to form XY bonds.
- **C** The energy change, ΔH , for the reaction is negative.
- **D** The reaction is endothermic.
- **12** Methane burns in oxygen to form carbon dioxide and water.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

The bond energies are shown in the table.

bond	bond energy in kJ/mol
C–H	+410
C=O	+805
O–H	+460
O=O	+496

What is the energy change for the reaction?

- **A** -818 kJ/mol
- **B** -323 kJ/mol
- C +323 kJ/mol
- **D** +818 kJ/mol

13 Methanol is made by reacting carbon monoxide with hydrogen. The reaction is reversible.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The forward reaction is exothermic.

Which combination of temperature and pressure gives the highest equilibrium yield of methanol?

	temperature /°C	pressure / atmospheres
Α	200	10
В	200	200
С	600	10
D	600	200

14 The ionic equation for the reaction between zinc and aqueous copper ions is shown.

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Which statement about this reaction is correct?

- A Copper ions are oxidised and their oxidation state changes.
- **B** Copper ions are reduced because they lose electrons.
- **C** Zinc atoms are oxidised and their oxidation state changes.
- **D** Zinc atoms are reduced because they gain electrons.
- **15** In which reaction is the rate of reaction **not** affected by light?
 - A the conversion of carbon dioxide and water to glucose and oxygen in green plants
 - **B** the reaction of bromine with ethene
 - **C** the reaction of chlorine with methane
 - **D** the reduction of silver ions to silver

16 Calcium carbonate reacts with dilute hydrochloric acid to form bubbles of carbon dioxide.

At a higher temperature, the same reaction is faster.

Which row explains this observation?

	collision rate	number of molecules with sufficient energy to react
Α	increases	more
В	increases	the same
С	stays the same	more
D	stays the same	the same

17 Ethanoic acid reacts with water to produce an acidic solution.

Which row describes the roles of ethanoic acid and water in this reaction?

	ethanoic acid	water
Α	accepts a proton	donates a proton
В	accepts an electron	donates an electron
C donates a proton		accepts a proton
D	donates an electron	accepts an electron

18 A solution of compound Z gives a light blue precipitate with aqueous ammonia. The precipitate dissolves in an excess of ammonia.

A flame test is done on compound Z.

What is the colour of the flame?

- A blue-green
- **B** lilac
- C red
- **D** yellow

19 Carbon, copper, magnesium, sodium and sulfur can all form oxides.

How many of these elements form acidic oxides?

A 1

B 2

C 3

D 4

20 Which method is used to make the salt copper(II) sul	ııaıc	Sullate
---	-------	---------

- A dilute acid + alkali
- B dilute acid + carbonate
- C dilute acid + metal
- D dilute acid + non-metal oxide

21 The Periodic Table lists all the known elements.

Elements are arranged in order of 1 number.

The melting points of Group I elements 2 down the group.

The melting points of Group VII elements 3 down the group.

Which words correctly complete gaps 1, 2 and 3?

	1	2	3
Α	nucleon	decrease	increase
В	nucleon	increase	decrease
С	proton	decrease	increase
D	proton	increase	decrease

22 Metal X reacts with non-metal Y to form an ionic compound with the formula X₂Y.

Which statements are correct?

- 1 X is in Group I of the Periodic Table.
- 2 X is in Group II of the Periodic Table.
- 3 Y is in Group VI of the Periodic Table.
- 4 Y is in Group VII of the Periodic Table.
- **A** 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4

- 23 Which statements about Group I and Group VII elements are correct?
 - 1 In Group I, lithium is more reactive than potassium.
 - 2 In Group VII, chlorine is more reactive than fluorine.

	statement 1	statement 2
Α	✓	✓
В	✓	X
С	X	✓
D	X	X

24 Which two properties are physical properties of all pure metals?

	property 1	property 2
Α	brittle	poor conductor of heat
B good conductor of electricity		malleable
C good conductor of heat		low melting point
D	malleable	low density

25 Aluminium is extracted from aluminium oxide using electrolysis.

Carbon dioxide is formed in this process.

Which equation shows the formation of carbon dioxide during the extraction of aluminium from aluminium oxide by electrolysis?

$$A Al_2(CO_3)_3 \rightarrow Al_2O_3 + 3CO_2$$

B
$$Al_2O_3 + 3CO \rightarrow 2Al + 3CO_2$$

$$\mathbf{C}$$
 C + $O_2 \rightarrow CO_2$

D
$$C^{4+} + 2O^{2-} \rightarrow CO_2$$

26 A sample of solid X was added to three different solutions to predict the position of X in the reactivity series.

$$X(s)$$
 + FeSO₄(aq) \rightarrow no reaction
$$X(s) + 2HCl(aq) \rightarrow XCl_2(aq) + H_2(g)$$

$$X(s) + Zn(NO_3)_2(aq) \rightarrow \text{no reaction}$$

Which other solution would react with solid X?

A $CaSO_4(aq)$ **B** $CuSO_4(aq)$ **C** $MgSO_4(aq)$ **D** $Na_2SO_4(aq)$

- 27 Which statement about the uses of aluminium, copper and iron is correct?
 - A Aluminium is used for aircraft manufacture because it has a high density.
 - **B** Aluminium is used for food containers because it is a good conductor of electricity.
 - **C** Copper is used for cooking utensils because it is a good conductor of heat.
 - D Stainless steel is used for car bodies because it corrodes easily.
- 28 Air is a mixture of gases.

The melting and boiling points of some gases present in clean, dry air are shown.

In the fractional distillation of liquid air, which gas boils first?

	gas	melting point/°C	boiling point/°C
Α	argon	-189	-186
В	krypton	–157	– 153
С	nitrogen	– 210	–196
D	oxygen	–219	-183

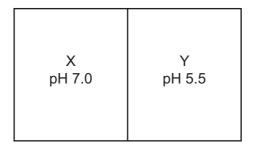
29 Water must be purified before it is suitable for use in the home.

Which processes are used to remove solid impurities and to kill bacteria?

	to remove solid impurities	to kill bacteria
Α	chlorination	chlorination
В	chlorination	filtration
С	filtration	chlorination
D	filtration	filtration

- **30** Which processes do **not** produce carbon dioxide?
 - 1 heating limestone
 - 2 burning gasoline in car engines
 - 3 photosynthesis
 - 4 production of nylon
 - **A** 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4

- 31 Which pair of compounds would make an NPK fertiliser?
 - A ammonium sulfate and potassium phosphate
 - **B** calcium hydroxide and ammonium nitrate
 - C calcium phosphate and potassium chloride
 - **D** potassium nitrate and ammonium sulfate
- 32 Which pollutant gas is produced by the decomposition of vegetation?
 - A carbon monoxide
 - **B** methane
 - C nitrogen dioxide
 - **D** sulfur dioxide
- **33** The equation for the formation of sulfur trioxide from sulfur dioxide is shown.


$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The forward reaction is exothermic.

Which combination of pressure and temperature gives the highest equilibrium yield of sulfur trioxide?

	pressure	temperature
Α	high	high
В	high	low
С	low	high
D	low	low

34 The diagram shows the pH values of the soil in two parts of a garden, X and Y.

Lime is used to neutralise the soil in one part of the garden.

To which part of the garden should the lime be added and why?

	part of the garden	because lime is
Α	Х	acidic
В	X	basic
С	Υ	acidic
D	Υ	basic

35 Statement 1 Hydrogen is used as a fuel.

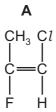
Statement 2 When hydrogen burns in the air to form water, heat energy is produced.

Which is correct?

- **A** Both statements are correct and statement 2 explains statement 1.
- **B** Both statements are correct but statement 2 does not explain statement 1.
- **C** Statement 1 is correct but statement 2 is incorrect.
- **D** Statement 2 is correct but statement 1 is incorrect.
- 36 Which row identifies compounds in the same homologous series?

	chemical properties	functional group
Α	different	different
В	different	same
С	similar	different
D	similar	same

- 37 Three chemical reactions are shown.
 - 1 catalytic addition of steam to ethene
 - 2 combustion of ethanol
 - 3 fermentation of glucose


In which of the reactions does the relative molecular mass of the carbon-containing compound decrease?

- **A** 1 and 2
- **B** 1 only
- **C** 2 and 3
- **D** 3 only

- 38 How is ethanol produced by fermentation?
 - A using anaerobic conditions at 30 °C
 - B using anaerobic conditions at 450 °C
 - **C** using steam at 30 °C
 - D using steam at 450 °C
- 39 Which substances react together to form ethyl propanoate?
 - A ethanoic acid and propanol
 - B ethanol and propene
 - **C** ethene and propanol
 - **D** propanoic acid and ethanol
- **40** The structure of a chlorofluorocarbon polymer is shown.

$$\begin{array}{c|cccc} CH_3 & Cl & CH_3 & Cl \\ \hline & & & & & \\ \hline -C & -C & -C & -C & -C \\ \hline & & & & & \\ H & F & H & F \end{array}$$

Which monomer is used to make this polymer?

© UCLES 2018

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	\	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	×e	xenon 131	98	R	radon			
	IIΛ			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	Αţ	astatine			
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	molonium –	116	_	livermorium -
	>			7	z	nitrogen 14	15	Ф	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	2			9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium –
	=			2	В	boron 11	13	A^l	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	Нg	mercury 201	112	S	copemicium -
										29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pq	palladium 106	78	瓧	platinum 195	110	Ds	darmstadtium -
G										27	ဝိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		- エ	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium -
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>a</u>	tantalum 181	105	op O	dubnium –
					atc	re				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿉	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium
	_			3	:=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	& S	rubidium 85	55	CS	caesium 133	87	Ŧ	francium

7.1	ΓΠ	lutetium 175	103	۲	lawrencium	I
0 5	γp	ytterbium 173	102	8	nobelium	ı
69 H	=	thulium 169	101	Md	mendelevium	I
88 L	L L	erbium 167	100	Fm	ferminm	ı
29	9	holmium 165	66	Es	einsteinium	ı
⁹⁹ (Ś	dysprosium 163	86	ŭ	californium	ı
65 F	<u>α</u>	terbium 159	26	ă	berkelium	I
64	פֿ	gadolinium 157	96	Cm	curium	I
e3	En	europium 152	92	Am	americium	ı
⁶⁵	S.E.	samarium 150	94	Pu	plutonium	ı
و ر	Į E	promethium -	93	ď	neptunium	ı
09	NG	neodymium 144	92	\supset	uranium	238
²⁹	ĭ	praseodymium 141	91	Ра	protactinium	231
28	S	cerium 140	06	T	thorium	232
22	Га	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).