

Cambridge IGCSE™

		Published	
Paper 4 (Extended) MARK SCHEME October/November 202			
Paper 4 (Extended) October/November 202	Maximum Mark: 130		
	MARK SCHEME		
MATHEMATICS 0580/4	Paper 4 (Extended)		October/November 2021
	MATHEMATICS		0580/43

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge IGCSE – Mark Schenwww.dynamicpap/erseconn2021

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 9

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

© UCLES 2021 Page 3 of 9

Question	Answer	Marks	Partial Marks
1(a)	Rotation 90° clockwise oe [centre] (5, 2)	3	B1 for each
1(b)(i)	Translation $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$	2	B1 for each
1(b)(ii)	4.12 or 4.123	2	M1 for $(their (-1))^2 + (their 4)^2$
2(a)	52°	3	M1 for 180 – 2 × 38, implied by 104 M1 for <i>their AOB</i> ÷ 2
2(b)(i)	80°	2	B1 for $FEC = 50$ or $FCE = 50$
2(b)(ii)	100°	1	FT 180 – their (i)
3(a)(i)	4.095	2	B1 for figs 4095 or M1 for $\frac{525 \times 7.8}{1000}$
3(a)(ii)	15	3	B2 for 35 OR M2 for $\frac{1}{2}(10+4)\times 5 \times L = 525$ oe M1 for $\frac{1}{2}(10+4)\times 5$ oe
3(a)(iii)	455 or 454.9	6	M3 for their $[BD =]\sqrt{3^2 + 5^2} \times (their \ 15)$ [× 2] or B2 for $\sqrt{34}$ or 5.83 or 5.830 to 5.831 or M1 for $5^2 + \left(\frac{1}{2}(10-4)\right)^2$ and M1 for their 35×2 M1 for (their 15) × 10 and (their 15) × 4
3(a)(iv)	4200	3	M2 for $525 \times \left(\frac{10}{5}\right)^3$ oe or M1 for $\left(\frac{10}{5}\right)^3$ or $\left(\frac{5}{10}\right)^3$ oe

© UCLES 2021 Page 4 of 9

Question	Answer	Marks	Partial Marks
3(b)	182.875 307.125 final answer	3	B2 for either seen
			or M1 for 10 ± 0.5 or 6 ± 0.5 or 4 ± 0.5 oe
4(a)	Correctly eliminate one variable	M1	
	p = 3 $q = -1$	A2	A1 for each If M0, SC1 for 2 values satisfying one of original equations If 0 scored SC1 for correct answers with no working
4(b)	$1\frac{1}{11}$ or $\frac{12}{11}$ 1.09 or 1.090 to 1.091	2	M1 for $\frac{3x}{12} + \frac{8x}{12} = 1$ or better
4(c)(i)	$-2 < x \leqslant 3$	3	B2 for $-2 < x$ or $x \le 3$
			or M1 for $-8 + 2 < 3x$ or $3x \le 7 + 2$
4(c)(ii)	-1, 0, 1, 2, 3	1	FT dep on –ve and +ve values in <i>their</i> (c)(i)
4(d)	4a(4-a) final answer	2	B1 for any correct partial factorisation
4(e)(i)	$\frac{2b}{3a}$ final answer	2	M1 for $\frac{1}{2a} \times \frac{4b}{3}$ or better
4(e)(ii)	$\frac{x-2}{x-1}$ final answer nfww	2	B1 for $2(x-1) - x$ oe seen.
5(a)(i)	105	2	M1 for $\frac{3}{100} \times 500[\times 7]$
5(a)(ii)	115 or 114.9	3	M2 for $500 \times \left(1 + \frac{3}{100}\right)^7 [-500]$
			or M1 for $500 \times \left(1 + \frac{3}{100}\right)^k$, k integer ≥ 2
5(b)	8600	3	M2 for $\frac{6269.4}{\left(1 - \frac{10}{100}\right)^3}$ oe or M1 for $C \times \left(1 - \frac{10}{100}\right)^3 = 6269.4$ oe
6(a)	9.33 or 9.334	3	M2 for $\frac{12\sin 50}{\sin 100}$ or M1 for $\frac{\sin 100}{12} = \frac{\sin 50}{AD}$ oe

© UCLES 2021 Page 5 of 9

Question	Answer	Marks	Partial Marks
6(b)	$[\cos =] \frac{11^2 + 12^2 - 8^2}{2 \times 11 \times 12}$	M2	M1 for $8^2 = 11^2 + 12^2 - 2 \times 11 \times 12\cos(BAC)$
	40.415	A2	A1 for 0.761 or $\frac{201}{264}$ or $\frac{67}{88}$
6(c)	70.8 or 70.77 to 70.79	3	M1 for $\frac{1}{2} \times 12 \times their$ (a) $\times \sin(180 - 100 - 50)$ M1 for $\frac{1}{2} \times 12 \times 11 \times \sin(40.42)$
6(d)	7.13 or 7.131 to 7.132	3	M2 for $\frac{\text{dist}}{11} = \sin(40.42)$ or M1 for recognition that shortest distance is perpendicular to AC
7(a)	87	3	M2 for $3c + 4c = 587 + 22$ or better or M1 for $3c + 2(2c - 11)$ [= 587 or 5.87]
7(b)	1.1[0]	3	M2 for $22w + 22 = 42w$ or better or M1 for $\frac{22}{w} = \frac{42}{w+1}$ oe OR B2 for number of bottles = 20 or M1 for $Nw = 22$ and $N(w+1) = 42$
7(c)(i)	$\frac{9}{x} + \frac{5}{2x+1} = 2.5$ oe	M2	M1 for $\frac{9}{x}$ or $\frac{5}{2x+1}$
	$9(2x+1) + 5x = 2.5x(2x+1) \text{ oe}$ or $\frac{9(2x+1) + 5x}{x(2x+1)} [= 2.5 \text{ oe}]$	M1	Correctly clearing fractions, or correctly collecting into a single fraction FT <i>their</i> expression dep on two fractions both with algebraic denominators
	All brackets expanded leading to $10x^2 - 41x - 18 = 0$ with no errors or omissions	A1	

© UCLES 2021 Page 6 of 9

Question	Answer	Marks	Partial Marks
7(c)(ii)	$ \begin{array}{c} (2x-9)(5x+2) \\ \text{or } \frac{-(-41) \pm \sqrt{(-41)^2 - 4(10)(-18)}}{2(10)} \end{array} $	M2	B1 for $(ax+b)(cx+d)$ with $ac = 10$ and $bd = -18$ or $ad+bc = -41$ or $\sqrt{(-41)^2 - 4(10)(-18)}$ or $\frac{-(-41) + \sqrt{q}}{2(10)}$ oe or $\frac{-(-41) - \sqrt{q}}{2(10)}$ oe or both or M1 for $\left(x - \frac{41}{20}\right)^2 - \frac{18}{10} - \left(\frac{41}{20}\right)^2 = 0$ or better
	10	A2	A1 for $[x =] \frac{9}{2}$ oe or M1 for $2 \times their$ positive root + 1
8(a)(i)	$\frac{60}{360} \times 600$ oe	1	
8(a)(ii)	45	2	M1 for $\frac{27}{360} \times 600$ oe
8(a)(iii)	Correct straight line on the pie chart	2	B1 for 75
8(b)	Correct diagram 0.6 3.4 5.2 7.5 8.7	3	B1 for any three of 0.6, 3.4, 5.2, 7.5, 8.7 correctly placed B1 for 7.5 and 8.7 seen
8(c)(i)	5	1	
8(c)(ii)	2	1	
8(c)(iii)	3	1	
8(d)	39.2	4	M1 for mid-values soi M1 for Σfx with x in correct interval including boundaries M1 dep for $\frac{\Sigma fx}{50}$ dep on second M1
9(a)	(0, 0), (1, 0), (2, 0)	2	B1 for any two correct If 0 scored, SC1 for all three x values clearly identified

© UCLES 2021 Page 7 of 9

Question	Answer	Marks	Partial Marks
9(b)	$x(x^2-x-2x+2)$ or $(x^2-x)(x-2)$	2	B1 for $x(x^2 - x - 2x + 2)$
	or $(x-1)(x^2-2x)$		or $(x^2-x)(x-2)$
	leading to $x^3 - 3x^2 + 2x$ with no errors or omissions		or $(x-1)(x^2-2x)$
9(c)	$3x^2 - 6x + 2$	B2	B1 for 2 correct terms
	$their \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	
	their $\frac{-(-6) \pm \sqrt{(-6)^2 - 4(3)(2)}}{2(3)}$	M2	M1 for $\sqrt{(-6)^2 - 4(3)(2)}$ or for
	2(3)		M1 for $\sqrt{(-6)^2 - 4(3)(2)}$ or for $p = -(-6)$ and $r = 2(3)$ if in form $\frac{p \pm \sqrt{q}}{r}$
	$ \begin{array}{c} (0.4, 0.4) \\ (1.6, -0.4) \end{array} $	В3	B2 for 0.4 or 0.42 and 1.6 or 1.57 to 1.58
	(110, 011)		or for one correct pair of coordinates or B1 for 0.4 or 0.42 or 1.6 or 1.57 to 1.58
			If 0 scored SC1 for $1 + \sqrt{\frac{1}{3}}$ and $1 - \sqrt{\frac{1}{3}}$
			or better or for one correct pair of coordinates in any form
9(d)	Correct sketch	2	FT their (c) but must be cubic i.e. correct shape cubic through origin and max and min in correct quadrants
			B1 for cubic shape sketch
10(a)(i)	1	1	
10(a)(ii)	$\frac{1}{4}$ oe nfww	2	M1 for $\frac{2}{4} \times \frac{2}{4}$ oe
10(a)(iii)	7	2	M1 for trials with $\left(\frac{3}{4}\right)^k \times \frac{1}{4}$ soi
10(b)(i)	0.72 oe	2	M1 for 0.9×0.8
10(b)(ii)	0.26 oe	3	M2 for $0.9 \times 0.2 + 0.1 \times 0.8$ or $1 - their$ (b)(i) -0.1×0.2
			or M1 for 0.9×0.2 or 0.1×0.8 or $1 - their$ (b)(i) or $1 - 0.1 \times 0.2$
11(a)(i)	64	1	

© UCLES 2021 Page 8 of 9

Question	Answer	Marks	Partial Marks
11(a)(ii)	127	1	FT 2 × their (a)(i) – 1
11(b)	$\pm \frac{1}{2}$ oe nfww	4	M1 for $(2x-1)^2 + 2(2x-1)$ B1 for $4x^2 - 2x - 2x + 1$ or $(2x-1)(2x-1+2)$ B1 for $4x^2 - 1$ [= 0] or $(2x-1)(2x+1)$ [= 0] OR M1 for $x(x+2) = 0$ (solving $g(x) = 0$) A1 for $x = 0$ or -2 B1 for $2x - 1 = 0$ or $2x - 1 = -2$
11(c)	$\frac{x+1}{2}$ oe final answer	2	M1 for $y+1=2x$ or $\frac{y}{2}=x-\frac{1}{2}$ or $x=2y-1$
11(d)	$-\frac{1}{6}$ oe nfww	3	B2 for $3x = -\frac{1}{2}$ oe OR M1 for $2^{2x} \times 2^x$ oe or $4^{\frac{1}{2}x} \times 4^x$ oe or 8^x oe M1 for $2^{-\frac{1}{2}}$ or $4^{-\frac{1}{4}}$ or $8^{-\frac{1}{6}}$ soi

© UCLES 2021 Page 9 of 9