MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
	1848 final answer	2	M1 for $1650 \times\left(1+\frac{12}{100}\right)$ oe
	1750	2	M1 for $\frac{500}{9-5}[\times 5]$ or $[\times 9]$ or any equation which would lead to $4 x=500$ or $4 x=2500$ or $4 x=4500$ or $4 x=7000$ when simplified
	$64 \frac{2}{7}$ or 64.3 or 64.28 to 64.29	1	
	$33: 20$ oe	2	B1 for $33: 6$ or $20: 6$ or 5.5 oe seen or 3.33...oe seen or M1 for two ratios with a common number of children implied by $20 k$ and $33 k$ seen, $k>0$
	236	3	M2 for $\frac{24}{2} \times 11+\frac{24}{3} \times 10$ oe or $((3 \times 11)+(2 \times 10)) \times 24 \div 6$ or $\frac{6}{6+20+33} \times x=24$
			or M1 for $\frac{24}{2} \times 11$ or $\frac{24}{2} \times 13$ soi or $\frac{24}{3} \times 10$ or $\frac{24}{3} \times 13$ soi oe or $24 \div 6$ soi
	17[.00]	3	M2 for $20.40 \div\left(1+\frac{20}{100}\right)$ oe or M1 for $(100+20) \%$ oe associated with 20.40 seen

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Question	Answer	Mark	Part marks
2 (a) (i)	66	1	
(ii)	24	1FT	FT 90 - their (a)(i)
(iii)	66	2FT	FT 90 - their (a)(ii) M1 for $[B O D=] 180-48$ or 180-2 \times their (a)(ii)
(iv)	114	1FT	FT 180 - their (a)(iii)
(b)	83.6 or 83.60 [...]	2	M1 for $\frac{1}{2} \times 15 \times 15 \times \sin (180-48)$ oe or $\frac{1}{2} \times 15 \times 15 \times \sin (180-2 \times$ their (a)(ii)) oe
(c)	Opposite angles add up to 180 OR Angle in a semicircle [$=90$]	1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Question	Answer	Mark	Part marks
(a) (i) (ii) (b) (c)	$\frac{600}{x+20}$ final answer $\begin{aligned} & \frac{600}{x} \text {-their } \frac{600}{x+20}=1.5 \mathrm{oe} \\ & 600(x+20)-600 x=1.5 x(x+20) \end{aligned}$ or $\begin{aligned} & \frac{600(x+20)-600 x}{x(x+20)}[=\text { their } 1.5] \\ & 600 x+12000-600 x=1.5 x^{2}+30 x \\ & {\left[0=1.5 x^{2}+30 x-12000\right]} \\ & 0=x^{2}+20 x-8000 \\ & -100,80 \end{aligned}$ 6.67 or 6.666 to 6.667 oe	M1 M1 M1 A1 3 2FT	Correctly clearing, or correctly collecting into a single fraction, two fractions both with algebraic denominators, one being $\frac{600}{x}$ Dep on previous M1, correctly multiplying their brackets and clearing fraction With no errors or omissions seen, dep on M3 M2 for $(x+100)(x-80)$ or M1 for $(x+a)(x+b)$ where $a b=-8000$ or $a+b=20$ OR B1 for $\sqrt{20^{2}-4 \times 1 \times(-8000)}$ or better and B1 for $\frac{-20+\sqrt{q}}{2 \times 1}$ or $\frac{-20-\sqrt{q}}{2 \times 1}$ FT $\frac{12}{2(\text { their } 80)+20} \times 100$ correctly evaluated to at least 3 sf M1 for choosing and using their positive root

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Question	Answer	Mark	Part marks
	9π final answer	2	M1 for $\frac{135}{360} \times 2 \times \pi \times 12$ oe
	(a) $4.5[0]$ or 4.497 to $4.504 \ldots$	2FT	FT their $9 \div 2$ M1 for $2 \pi r=$ their 9π or $12 \pi r=\frac{135}{360} \pi 12^{2}$ oe
	(b) 11.1 or $11.12[\ldots]$	3FT	FT their $\sqrt{12^{2}-\text { their } 4.5^{2}}$ to 3 sf or better (their $4.5<12$) M2 for $\sqrt{12^{2}-\text { their } 4.5^{2}}$ (their $4.5<12$) or M1 for $12^{2}=h^{2}+$ their 4.5^{2} oe (their $4.5<12$)
	75 nfww	3	M2 for $l=\frac{35}{7} \times 15$ or $x=\frac{35}{7} \times 8$ oe or for 40 seen nfww or correct trig or Pythagoras' method leading to value rounding to 40.0 M1 for $\frac{l}{15}=\frac{35}{7}$ oe or $\frac{x}{8}=\frac{35}{7}$ oe or $\frac{l-35}{8}=\frac{35}{7}$ oe or $\frac{l-35}{l}=\frac{8}{15}$ oe
	2730 or 2730.0 to 2730.4 nfww	3	M2 dep for $\pi \times 15 \times$ their $75-\pi \times 8 \times$ (their $75-35$) $\left[+\pi \times 8^{2}\right]$ dep their $75>35$ or 805π [2527.7 to 2530] nfww or 869π [2728.6 to 2731.2] nfww or M1 for $\pi \times 15 \times$ their 75 or 1125π [3532.5 to 3535.8] nfww seen or $\pi \times 8 \times($ their $75-35)$ or 320π [1004.8 to 1005.8] nfww seen or $\pi \times 8^{2}$ or 64π [200.9 to 201.2] nfww seen
(c) (i)	$16 r^{3}$	2	M1 for $[M=] k \times r^{3}$ or $1458=k \times 4.5^{3} \mathrm{oe}$ or $\frac{M}{1458}=\frac{r^{3}}{4.5^{3}}$ oe After M0, SC1 for 16 seen
(ii)	8:27 oe	1	Must be numeric, e.g. 128:432

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

5 (a)	2 and 7	2	B1 for each value
(b)	Complete correct curve	5	B3 FT for their 9 or 10 points or B2 FT for their 7 or 8 points or B1 FT for their 5 or 6 points and B1 independent for one branch on each side of the y-axis and not touching the y-axis SC4 for correct curve with branches joined
(c)	Correct tangent and $-13 \leqslant \operatorname{grad} \leqslant-8$	3	B2 for close attempt at tangent at $x=1$ and answer in range OR B1 for ruled tangent at $x=1$, no daylight at $x=1$ Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=0.8$ and 1.2 and M1 (dep on B1 or close attempt at tangent [at any point] for $\frac{\text { rise }}{\text { run }}$
(d) (i)	5 to 6	1	
(ii)	2 to 2.35 and -2.55 to -2.35	2FT	FT their k B1FT for each correct solution
(e)	$\begin{aligned} & {[a=]-5} \\ & {[b=]-1} \\ & {[c=] 12} \end{aligned}$	3	B2 for two correct values or for $x^{3}-5 x^{2}-x+12[=0]$ oe or M1 for $x^{2}-2 x+\frac{12}{x}=3 x+1$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

(b) (c)	$95.5^{2}+83.1^{2}-2 \times 95.5 \times 83.1 \times$ $\cos 101$ 138.0... 110 or 109.7 to 109.8 18.8 or $18.79[\ldots]$	M2 A2 4	M1 for $\cos 101=\frac{95.5^{2}+83.1^{2}-A B^{2}}{2 \times 95.5 \times 83.1}$ A1 for 19054.[...] also implies M2 B3 for 36.2 or 36.20 to 36.24 [1..] or M2 for $[\sin =] \frac{83.1 \times \sin 101}{138[.0 . .]}$ oe or M1 for correct implicit version After M0, SC1 for angle $A B C=42.76$ to 42.8 M1 for $46.2 \times \cos (45+21)$ oe After M0, SC1 for answer 42.2 or 42.20 to 42.21
$7 \quad$ (a) (i) (ii) (b)	316 Three correct blocks with heights $0.09,0.36,0.24$ with correct widths and no gaps Students have a greater range of estimates oe [On average] adults estimated a greater mass oe	4 3 B1 B1	M1 for $100,250,325,375,450$ soi M1 for $\Sigma f m$ with m 's in intervals including boundaries [15800] M1 (dep on 2nd M1) for their $\Sigma f m \div 50$ B2 for two correct blocks or B1 for one correct block or three correct frequency densities soi

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

(a) (i) (ii) (iii) (iv) (b) (c)	$\begin{aligned} & x \geqslant 100 \text { final answer } \\ & y \geqslant 120 \text { final answer } \\ & x+y \leqslant 300 \text { final answer } \\ & 40 x+80 y \geqslant 16000 \\ & \text { or } 0.4 x+0.8 y \geqslant 160 \\ & x=100 \text { ruled } \\ & y=120 \text { ruled } \\ & x+y=300 \text { ruled } \\ & x+2 y=400 \text { ruled } \end{aligned}$ Correct shading	1 M1 B1 B1 B1 B2 B1	with no errors seen but isw substitution of values after correct inequality Allow $\mathbf{B 1}$ for line with negative gradient passing through $(400,0)$ or $(0,200)$ when extended Dep on all previous marks earned Condone any clear indication of the required region M1 for $x=100$ and $y=200$ selected or for $x \times 0.4+y \times 0.8$ oe evaluated where (x, y) is an integer point in their [unshaded] region

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

$\begin{array}{ll}9 & \text { (a) } \\ & \text { (b) } \\ \text { (i) }\end{array}$	$\begin{aligned} & 4 x-3 x^{2} \text { or } x(4-3 x) \text { nfww } \\ & \text { final answer } \end{aligned}$	3	B2 for $3 x^{2}-6 x-6 x^{2}+10 x$ or M1 for $3 x^{2}-6 x$ or $-6 x^{2}+10 x$
	$(2+y)(3 w-2 x)$ oe final answer	2	$\text { M1 for } 3 w(2+y)-2 x(2+y)$ $\text { or } 2(3 w-2 x)+y(3 w-2 x)$
	$(2 x+5 y)(2 x-5 y) \quad$ final answer	2	M1 for $(2 x \pm 5 y)(2 x \pm 5 y)$ or $(2 x+k y)(2 x-k y)$ or $(k x+5 y)(k x-5 y), k \neq 0$ or $(2 x+5)(2 x-5)$ or $(2+5 y)(2-5 y)$
	$\frac{27 x^{6}}{64} \quad$ final answer	2	B1 for 2 [out of 3] elements correct in the right form in final answer or final answer contains 27 and 64 and $x^{[-1]}$ or $\frac{3 x^{2}}{4}$ seen or $\frac{729 x^{12}}{4096}$ seen
	$2 n$ is even and subtracting 1 gives an odd number	1	Must interpret the $2 n$ as even or not odd and then the -1 oe
	$2 n+1$ oe final answer	1	
	their $(2 n+1)^{2}-(2 n-1)^{2}$	M1	Could use alternate correct expressions for consecutive odd numbers. Allow method and accuracy marks if correct. Could reverse the algebraic terms their $(2 n-1)^{2}-(2 n+1)^{2}$ leading to $-8 n$. Allow method and accuracy marks if correct.
	$4 n^{2}+4 n+1-4 n^{2}+4 n-1$	M1	Dep on M1 for expanding brackets in their expressions. If seen alone and completely correct then implies previous M1 Allow $4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right)$
	$8 n$	A1	With no errors seen. After $\mathbf{0}$ scored, allow SC1 for two correctly evaluated numeric examples of subtracting consecutive odd squares isw

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

\begin{tabular}{|c|c|c|c|}
\hline 11 (a) \& $\frac{38}{56}$ or $\frac{19}{28}$ oe
$$
\frac{60}{336} \text { or } \frac{5}{28} \text { oe }
$$ \& 4

2 \& | [0.679 or 0.6785 to 0.6786] |
| :--- |
| M3 for $\frac{4}{8} \times \frac{4}{7}+\frac{3}{8} \times \frac{5}{7}+\frac{1}{8}\left[\times \frac{7}{7}\right]$ oe |
| or |
| M2 for sum of two of the products isw $\frac{4}{8} \times \frac{4}{7}, \frac{3}{8} \times \frac{5}{7}, \frac{1}{8}\left[\times \frac{7}{7}\right] \mathrm{oe}$ |
| or |
| M1 for $\frac{4}{8} \times \frac{4}{7}$ or $\frac{3}{8} \times \frac{5}{7}$ oe isw or $\frac{1}{8} \times \frac{7}{7}$ isw |
| After $\mathbf{0}$ scored, SC1 for answer of $\frac{38}{64}$ oe |
| M1 for $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ |
| or $\left(\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}\right)+3\left(\frac{4}{8} \times \frac{1}{7} \times \frac{3}{6}\right)$ oe |

\hline
\end{tabular}

