CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme		w.dynamicpap Syllabus	Paper	
IGCSE – May/J				13	0580	43
Abbre cao cso dep ft isw oe SC www art soi	correct depen follow ignore or equ Specia without anythi	t answer only t solution only				
1 (a (b	l)	2814 final answer 257.95 final answer	2 2		5 soi by 469 or ans 0.11 oe or ans = 25	
(c)) (i) (ii)	280.5[0] final answer 375	2 3	M2 for 330 ÷ (1 - 0.15) oe or ans = 1 - 0.12) oe = $(100 - 12)\%$ oe	= 281
(d	1)	1605.89 or 1605.9[0]	3	1605.898751 or 1500 × 1.07($(1 + 0.023)^3$ oe soi (05) $0 \times (1 + 0.023)^2$ oe	by
(e)		23.1 or 23.07 to 23.08	3	M2 for $\frac{325 - 2}{325}$ Or M1 for $\frac{325}{325}$ better or $\frac{250}{325} \times 100$ s	$\frac{-250}{325}$ soi by 0.230	7 3sf or

ynamicpapers	com
 ynannopapois	

Page 3		000 3	Mark Sc	w.dynamicpa Syllabus			
Page 3			IGCSE – May	0580	Paper 43		
			IGCSE – May	June 20	15	0300	45
2	n		Perpendicular bisector of QR ruled with 2 correct sets of arcs centred Q and R	2	B1 for correct	bisector ruled	
			Bisector of angle <i>SPQ</i> ruled with correct arcs. (Marks on <i>PS</i> and <i>PQ</i> and correct pair of arcs)	2	B1 for correct a	angle bisector ruled	
			Compass drawn arc centre R with radius 6 cm (±2 mm)	B2		pass drawn arc centric training the second sec	
			Correct region shaded cao	1dep	Dependent on a	all B4 marks for the	e correct loci
		(ii)	217 to 221	1			
	(b)	(i)	6360 or 6361 to 6363	2	M1 for $\pi \times 45^2$		
		(ii)	165 or 164.9 to 165	2	M1 for $\frac{210}{360}$ ×	$2\pi \times 45$	
3	(a)	(i)	$x \ge 5$	1	-1 once for stri	ict inequalities in (i)) to (iii)
		(ii)	$y \ge 11$	1			
		(iii)	$x + y \ge 20$	1			
	(b)		$4x + 8y \le 160$ and divide by 4	1	If there is a fination one	al inequality it must	t be the given
	(c)	(i)	x = 5 ruled	1	Must be on cor	rect grid line	
			y = 11 ruled	1	Must be on cor	rect grid line	
			x + y = 20 ruled	2		s intercept correct w t not parallel to an a	
			x + 2y = 40 ruled	2		s intercept correct w t not parallel to an a	
			Correct shading of unwanted region	1dep	Dependent on	6 marks earned for t	the boundaries
		(ii)	29	2		valuated where (x, y) teral and x and y ar	

www.dynamicpapers.com

	Page 4	Mark So	www.dynamicpapers.com Syllabus Paper	
		IGCSE – May/June 2013		
		*		· · · · · · · · · · · · · · · · · · ·
4	(a)	3080	2	M1 for $\frac{1}{2} \times 7 \times 22 \times 40$
	(b)	46.2 or 46.18 to 46.2 www	4	M3 for $\sqrt{7^2 + 22^2 + 40^2}$ or M2 for $7^2 + 22^2 + 40^2$ soi by 2133 or M1 for correct Pythagoras on one face
	(c)	8.7 or 8.7 to 8.72 www	3	M2 for $\sin^{-1} \frac{7}{their(b)}$ oe
				or M1 for $\sin = \frac{7}{their(b)}$ oe
	(d)	217	3	M1 for $\frac{4}{3} \times \pi \times 1.5^3$ soi by 14.1 to 14.14
				and M1 dep for <i>their</i> (a) ÷ <i>their</i> 14.14 soi by 218. Dependent on M1 earned
	(e) (i)	25.13875 final answer	2	B1 for 4.55 and 11.05 seen or 25.13875 seen and then spoiled
	(ii)	25.14	1FT	Strict FT <i>their</i> (e)(i) correct to 4s.f. if rounding is possible
5	(a)	-5.04, 1.75, 0	3	B1 for each correct value
	(b)	Fully correct curve	5	 B3FT for 10 correct plots from <i>their</i> (a) B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots and SC1 for two branches not joined
	(c)	-1.6 to - 1.5 -0.4 to -0.3 1.8 to 1.9	1 1 1	
	(d)	-2.6 to -2.5 www -0.4 to -0.3 1	1 1 1	After 0 scored, M1 for $y = 2x - 2$ drawn
	(e)	3.25 to 4.25 with correct tangent	3	B1 for correct tangent
				B2 for answer in range dep on close attempt at tangent
				M1dep for $[-]\frac{rise}{run}$ used with values so i from
				tangent, dep on correct or close attempt at tangent

www.dynamicpapers.com

Page 5		Mark So	www.dynamicpapers.com Syllabus Paper	
		IGCSE – May		
			Ι	
6	(a)	$\frac{3}{10}$ correctly placed	1	Accept 0.3
		$\frac{6}{9}$ and $\frac{3}{9}$ correctly placed	1	Accept 0.667 or better and 0.333 or better
		$\frac{7}{9}$ and $\frac{2}{9}$ correctly placed	1	Accept 0.778 or better and 0.222 or better
	(b)	$\frac{42}{90}$ or $\frac{21}{45}$ or $\frac{14}{30}$ or $\frac{7}{15}$	3	M2 for $\frac{7}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{7}{9}$ soi by 0.467 or better or M1 for $\frac{7}{10} \times \frac{3}{9}$ or $\frac{3}{10} \times \frac{7}{9}$ soi by 0.233 or
				better 10° 9 10° 9 30° 0.255° 0.255°
7	(a) (i)	Triangle at (1, 3) (1, 9) (3, 3)	2	SC1 for correct vertices not joined or triangle(1, 1) (3, 1) (1, 7)
	(ii)	$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$	2	SC1 for $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$, $k \neq \pm 1$ or 0
				or $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$
	(b) (i)	Shear x-axis oe invariant [factor] 2	1 1 1	
	(ii)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	2FT	FT from <i>their</i> 2 in (b)(i)
		$\begin{pmatrix} 1 & - \\ 0 & 1 \end{pmatrix}$		SC1 for $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \neq 0$
				or $\begin{pmatrix} 1 & 0\\ 2FT & 1 \end{pmatrix}$
8	(a) (i)	27	1	
	(ii)	54	1	
	(iii)	153	1	
	(b) (i)	59.6 or 59.57 www	4	M2 for $45^2 + 32^2 - 2 \times 45 \times 32 \times \cos 100$ or M1 for implicit cos rule and A1 for 3549
	(ii)	22.[0] or 21.99 www	3	M2 for $324 \div (\frac{1}{2} \times 32 \times \sin 67)$ or M1 for $[324 = \frac{1}{2} \times 32 \times x \times \sin 67]$
	(iii)	81[.0]	2	B1 for 2^2 or $(\frac{1}{2})^2$ oe seen or $\frac{1}{2} \times 16 \times \frac{1}{2}$ their(b)(ii) × sin67

	_	www.dynamicpapers.com Mark Scheme Syllabus Paper					
	Page 6		Syllabus Paper				
		IGCSE – Ma	ay/June 20	013 0580 43			
9	(a) (i)	14	1				
	(ii)	8	1				
	(iii)	30 – <i>their</i> (ii)	1FT				
	(b)	$\frac{11}{80}$	2	SC1 for $\frac{69}{80}$			
	(c)	16, 4	2	B1 for each correct value			
	(d)	18.0625 rot to 3sf or better or 18.1 www	3	M1 for Σmf for <i>m</i> as mid values of 5, 12.5, 22.5 35 and 45 (= 1445) and M1 dep for $\Sigma mf \div 80$, dep on M1 earned			
	(e)	Correct widths with no gaps 2^{nd} block w = 5, fd = 2.4 3^{rd} block w = 15 fd = 1.2 4^{th} block w = 10 and fd = 1.6 5^{th} block w = 10 and fd = 0.4	1 1 1FT 1FT	Strict FT from <i>their</i> (c) Strict FT from <i>their</i> (c) After 0 scored for blocks, SC1 for 4 correct fds soi by correct heights			
10	(a) (i)	4.5 or 4 ¹ / ₂	3	M2 for a complete correct method or M1 for one correct step at any stage.			
	(ii)	(x-6)(x-1)	M2	M1 for $(x + a)(x + b)$ where $ab = 6$ or $a + b = -7$			
		1, 6	A1FT	FT their brackets dep on M1 earned After M0 scored SC1 for 1, 6 as answer			
	(iii)	6	4	B1 for $2(3x - 2) + x + 2 = 4 \times 10$ oe and B1 for correct multiplication of a bracket and M1 for correct rearrangement of their linear equation without brackets to $ax = b + c + d$ or better			
	(b)	a = 1/3 oe, $b = 1/2$ oe	6	B1 for any one of 1 = a + b + 1/6 oe 5 = 8a + 4b + 2/6 oe 14 = 27a + 9b + 3/6 oe 30 = 64a + 16b + 4/6 oe Or any other correct equation and B1 for another of the above equations and M1 for equating one coefficient or correct rearrangement to give <i>a</i> or <i>b</i> as subject and M1 for subtracting to eliminate <i>a</i> or <i>b</i> or correct substitution for <i>their a</i> or their <i>b</i> A1 for $a = 1/3$ on or $b = 1/2$ on			

A1 for a = 1/3 oe or b = 1/2 oe